Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
End-To-End Unsupervised Fault Detection Using A Flow-Based Model
Department of Industrial Engineering, Dongguan University of Technology, Dongguan, 523808, China.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik.ORCID-id: 0000-0002-7458-6820
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China.ORCID-id: 0000-0002-8018-1774
Department of Industrial Engineering, Dongguan University of Technology, Dongguan, 523808, China.
Visa övriga samt affilieringar
2021 (Engelska)Ingår i: Reliability Engineering & System Safety, ISSN 0951-8320, E-ISSN 1879-0836, Vol. 215, artikel-id 107805Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Fault detection has been extensively studied in both academia and industry. The rareness of faulty samples in the real world restricts the use of many supervised models, and the reliance on domain expertise for feature engineering raises Other barriers. For this reason, this paper proposes an unsupervised, end-to-end approach to fault detection based on a flow-based model, the Nonlinear Independent Components Estimation (NICE) model. A NICE model models a target distribution via a sequence of invertible transformations to a prior distribution in the latent space. We prove that, under certain conditions, the L2-norm of normal samples’ latent codes in a trained NICE model is Chi-distributed. This facilitates the use of hypothesis testing for fault detection purpose. Concretely, we first apply Zero-phase Component Analysis to decorrelate the data of normal states. The whitened data are fed to a NICE model for training, in a maximum likelihood sense. At the testing stage, samples whose L2-norm of latent codes fail in the hypothesis testing are suspected of being generated by different mechanisms and hence regarded as potential faults. The proposed approach was validated on two datasets of vibration signals; it proved superior to several alternatives. We also show the use of NICE, a type of generative model, can produce real-like vibration signals because of the model's bijective nature.

Ort, förlag, år, upplaga, sidor
Elsevier, 2021. Vol. 215, artikel-id 107805
Nyckelord [en]
Prognostics and health management, Fault detection, Deep learning, Unsupervised learning, Flow-based models
Nationell ämneskategori
Programvaruteknik
Forskningsämne
Drift och underhållsteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-84635DOI: 10.1016/j.ress.2021.107805ISI: 000690283800019Scopus ID: 2-s2.0-85107630379OAI: oai:DiVA.org:ltu-84635DiVA, id: diva2:1557554
Anmärkning

Validerad;2021;Nivå 2;2021-06-18 (johcin);

Forskningsfinansiärer: National Natural Science Foundation of China (71801045, 71801046, 51905160); the Research start-up funds of DGUT (GC300502-46); the Natural Science Foundation of Hunan Province (2020JJ5072); the National Key Research and Development Program of China (2020YFB1712103); the Fundamental Research Funds for the Central Universities (531118010335)

Tillgänglig från: 2021-05-26 Skapad: 2021-05-26 Senast uppdaterad: 2022-10-28Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Lin, JingShao, Haidong

Sök vidare i DiVA

Av författaren/redaktören
Lin, JingShao, Haidong
Av organisationen
Drift, underhåll och akustik
I samma tidskrift
Reliability Engineering & System Safety
Programvaruteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 157 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf