Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Big-data driven building retrofitting: An integrated Support Vector Machines and Fuzzy C-means clustering method
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriellt och hållbart byggande.ORCID-id: 0000-0002-4695-5369
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriellt och hållbart byggande. Department of Construction Management, Harbin Institute of Technology, Harbin 150009, China; Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China; Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150090, China.ORCID-id: 0000-0002-9310-9093
2020 (Engelska)Ingår i: WSBE 20 - World Sustainable Built Environment - Beyond2020 2-4 November 2020, Gothenburg, Sweden / [ed] Holger Wallbaum; Alexander Hollberg; Liane Thuvander; Paula Femenias; Izabela Kurkowska; Kristina Mjörnell; Colin Fudge, Institute of Physics (IOP), 2020, artikel-id 042013Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

It has become a mainstream to use physical models to quantify expected energy savings from alternative retrofit methods and technologies. However, they are not suitable for predicting energy use of buildings when detailed and specified input parameters are unavailable. The overall purpose of the research is to support the stakeholders in taking decisions on refurbishments options when not all of physical information is available, in order to achieve the Swedish Energy Agency's measurements of near-zero energy buildings. The research will transfer big data from Swedish Energy Performance Certificates for building retrofitting. A Support Vector Machines and Fuzzy C-means clustering (SVM-FCM) integrated machine learning algorithm is used directly to extract the case-specific knowledge from EPC big data regarding building characteristics and energy saving of retrofit measures. It enables to prioritize retrofit measures and compute their expected energy savings for buildings. This proposed data driven method is an attempt of taking advantage of big data for practical building retrofit selection.

Ort, förlag, år, upplaga, sidor
Institute of Physics (IOP), 2020. artikel-id 042013
Serie
IOP Conference Series: Earth and Environmental Science (EES), ISSN 1755-1315 ; 588(1.11 – 1.14)
Nationell ämneskategori
Husbyggnad
Forskningsämne
Byggproduktion och teknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-85828DOI: 10.1088/1755-1315/588/4/042013Scopus ID: 2-s2.0-85097166873OAI: oai:DiVA.org:ltu-85828DiVA, id: diva2:1570653
Konferens
World Sustainable Built Enviroment Conference BEYOND 2020 (WSBE 20), Online, November 2-4, 2020
Forskningsfinansiär
Forskningsrådet Formas
Anmärkning

Finansiär: China Postdoctoral Science Foundation (2020M670918)

Tillgänglig från: 2021-06-22 Skapad: 2021-06-22 Senast uppdaterad: 2021-06-22Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Lu, WeizhuoFeng, Kailun

Sök vidare i DiVA

Av författaren/redaktören
Lu, WeizhuoFeng, Kailun
Av organisationen
Industriellt och hållbart byggande
Husbyggnad

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 64 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf