Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Vector-Based Analysis of the Similarity Between Breathing and Heart Rate During Paced Deep Breathing
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap.ORCID-id: 0000-0002-6032-6155
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap.ORCID-id: 0000-0003-0069-640x
Umeå University, Umeå, Sweden.
2018 (Engelska)Ingår i: Computing in Cardiology 2018: Proceedings / [ed] Christine Pickett; Cristiana Corsi; Pablo Laguna; Rob MacLeod, IEEE, 2018Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The heart rate (HR) response to paced deep breathing (DB) is a common test of autonomic function, where the scoring is based on indices reflecting the overall heart rate variability (HRV), where high scores are considered as normal findings but can also reflect arrhythmias. This study presents a method based on hyperdimensional computing for assessment of the similarity between feature vectors derived from the HR and breathing signals. The proposed method was used to identify subjects where HR did not follow the paced breathing pattern in recordings from DB tests in 174 healthy subjects and 135 patients with cardiac autonomic neuropathy. Subjects were classified in 4 similarity classes, where the lowest similiarity class included 35 patients and 3 controls. In general, the autonomic function cannot be evaluated in subjects in the lowest similarity class if they also present with high HRV scores, since this combination is a strong indicator of the presence of arrhythmias. Thus, the proposed vector-based similarity analysis is one tool to identify subjects with high HRV but low cardiorespiratory synchronization during the DB test, which falsely can be interpreted as normal autonomic function.

Ort, förlag, år, upplaga, sidor
IEEE, 2018.
Serie
Computers in Cardiology (CinC), E-ISSN 2325-887X ; 45
Nationell ämneskategori
Kardiologi och kardiovaskulära sjukdomar Datavetenskap (datalogi)
Forskningsämne
Kommunikations- och beräkningssystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-86223DOI: 10.22489/CinC.2018.146ISI: 000482598700029Scopus ID: 2-s2.0-85068788179OAI: oai:DiVA.org:ltu-86223DiVA, id: diva2:1576731
Konferens
45th Computing in Cardiology Conference (CinC 2018), Maastricht, The Netherlands, September 23-26, 2018
Anmärkning

ISBN för värdpublikation: 978-1-7281-0958-9

Tillgänglig från: 2021-07-01 Skapad: 2021-07-01 Senast uppdaterad: 2025-02-10Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Kleyko, DenisOsipov, Evgeny

Sök vidare i DiVA

Av författaren/redaktören
Kleyko, DenisOsipov, Evgeny
Av organisationen
Datavetenskap
Kardiologi och kardiovaskulära sjukdomarDatavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 23 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf