Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Hybridization of Differential Evolution and Adaptive-Network-Based Fuzzy Inference System in Estimation of Compression Coefficient of Plastic Clay Soil
University of Transport & Communications (UTC), Hanoi 100000, Vietnam.
University of Transport & Communications (UTC), Hanoi 100000, Vietnam.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.ORCID-id: 0000-0002-6790-2653
Gorgan Univ Agr Sci & Nat Resources, Dept Watershed & Arid Zone Management, Gorgan 4918943464, Golestan, Iran.
Visa övriga samt affilieringar
2022 (Engelska)Ingår i: CMES - Computer Modeling in Engineering & Sciences, ISSN 1526-1492, E-ISSN 1526-1506, Vol. 130, nr 1, s. 149-166Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

One of the important geotechnical parameters required for designing of the civil engineering structure is the compressibility of the soil. In this study, the main purpose is to develop a novel hybrid Machine Learning (ML) model (ANFIS-DE), which used Differential Evolution (DE) algorithm to optimize the predictive capability of Adaptive-Network-based Fuzzy Inference System (ANFIS), for estimating soil Compression coefficient (Cc) from other geotechnical parameters namely Water Content, Void Ratio, Specific Gravity, Liquid Limit, Plastic Limit, Clay content and Depth of Soil Samples. Validation of the predictive capability of the novel model was carried out using statistical indices: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Correlation Coefficient (R). In addition, two popular ML models namely Reduced Error Pruning Trees (REPTree) and Decision Stump (Dstump) were used for comparison. Results showed that the performance of the novel model ANFIS-DE is the best (R = 0.825, MAE = 0.064 and RMSE = 0.094) in comparison to other models such as REPTree (R = 0.7802, MAE = 0.068 and RMSE = 0.0988) and Dstump (R = 0.7325, MAE = 0.0785 and RMSE = 0.1036). Therefore, the ANFIS-DE model can be used as a promising tool for the correct and quick estimation of the soil Cc, which can be employed in the design and construction of civil engineering structures.

Ort, förlag, år, upplaga, sidor
Tech Science Press , 2022. Vol. 130, nr 1, s. 149-166
Nyckelord [en]
Compression coefficient, differential evolution, adaptive-network-based fuzzy inference system, machine learn-ing, vietnam
Nationell ämneskategori
Geoteknik och teknisk geologi
Forskningsämne
Geoteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-87228DOI: 10.32604/cmes.2022.017355ISI: 000696975300001Scopus ID: 2-s2.0-85120651957OAI: oai:DiVA.org:ltu-87228DiVA, id: diva2:1597466
Anmärkning

Validerad;2021;Nivå 2;2021-11-30 (johcin)

Tillgänglig från: 2021-09-27 Skapad: 2021-09-27 Senast uppdaterad: 2025-02-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Al-Ansari, Nadhir

Sök vidare i DiVA

Av författaren/redaktören
Al-Ansari, Nadhir
Av organisationen
Geoteknologi
I samma tidskrift
CMES - Computer Modeling in Engineering & Sciences
Geoteknik och teknisk geologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 197 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf