Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Developing an artificial intelligent model for predicting combustion and flammability properties
School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China.
School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China.
Department of Petroleum and Natural Gas Engineering, School of Petroleum Studies, University of Mines and Technology, Tarkwa, Ghana.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.ORCID-id: 0000-0002-7140-4737
Visa övriga samt affilieringar
2022 (Engelska)Ingår i: Fire and Materials, ISSN 0308-0501, E-ISSN 1099-1018, Vol. 46, nr 5, s. 830-842Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

While there have been various attempts in establishing a model that can predict the flammability characteristics of polymers based on their molecular structure, artificial intelligence (AI) presents a promising alternative in tackling this pressing issue. Therefore, a novel approach of adopting AI methods, extreme learning machines (ELMs) and group method of data handling (GMDH) in estimating heat release capacity, total heat release and char yield from thermophysical properties of polymers were addressed. GMDH showed a clear indication of overfitting whereby the models generated excellent training results but could not provide similar performance during testing. The superior generalisation performance of ELM during testing makes it the standout method. ELM produced HRC predictions having R and RRMSE of 0.86 and 0.405 for training, 0.94 and 0.356 for testing. For THR estimates from ELM, the R and RRMSE scores were 0.9 and 0.195 for training, 0.93 and 0.131 for testing. While char yield ELM model generated 0.88 and 0.795 for training, 0.93 and 0.383 for testing. The potential of ELM was demonstrated as it estimated the flammability parameters of 105 polymers having little or no empirical test results.

Ort, förlag, år, upplaga, sidor
John Wiley & Sons, 2022. Vol. 46, nr 5, s. 830-842
Nyckelord [en]
ELM, flammability, GMDH, microscale combustion calorimeter, thermophysical properties
Nationell ämneskategori
Energiteknik
Forskningsämne
Byggkonstruktion
Identifikatorer
URN: urn:nbn:se:ltu:diva-87236DOI: 10.1002/fam.3030ISI: 000697151600001Scopus ID: 2-s2.0-85115116469OAI: oai:DiVA.org:ltu-87236DiVA, id: diva2:1597639
Anmärkning

Validerad;2022;Nivå 2;2022-08-19 (hanlid);

Forskningsfinansiär: National Natural Science Foundation of China (51776098), NSFC, STINT (51911530151, CH2018-7733)

Tillgänglig från: 2021-09-27 Skapad: 2021-09-27 Senast uppdaterad: 2022-10-27Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Försth, MichaelDas, Oisik

Sök vidare i DiVA

Av författaren/redaktören
Försth, MichaelDas, Oisik
Av organisationen
Byggkonstruktion och brand
I samma tidskrift
Fire and Materials
Energiteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 107 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf