Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using an explainable artificial intelligence
Department of Computer Engineering, Amirkabir University of Technology, Tehran, Iran.
Electrical and Computer Engineering Department, Semnan University, Semnan, Iran.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.ORCID-id: 0000-0002-2265-6321
2021 (Engelska)Ingår i: Results in Geophysical Sciences, ISSN 2666-8289, Vol. 8, artikel-id 100034Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The durability of rocks is a substantial rock property that has to be considered for designing geotechnical structures. Uniaxial compressive strength (UCS) and Young's modulus (E) are key indexes for measuring rocks’ durability. Several types of artificial intelligence (AI) methods have been used for modeling these key indexes; however, surprisingly, no explainable AI (XAI) has been considered for their model developments. An XAI is a model whose assessment is not a black box, and humans could understand its problem solution approach. This study has filled this gap and presented SHAP (Shapley Additive Explanations) as one of the most recent XAI methods for modeling UCS, and E. SHAP value could successfully illustrate intercorrelations between rock properties (porosity, point load index, P-wave velocity, and Schmidt hammer rebound number) and their representative UCS and E for each individual record and also together as variables. Results indicated that P-wave velocity has the highest importance for UCS and E prediction. eXtreme gradient boosting (XGBoost) was used as a solid predictive AI system for UCS and E estimation. Outcomes (R2> 0.99) confirmed the high accuracy of the SHAP-XGBoost model comparing with other typical AI models (Random Forest and Support Vector Regression). These results indicated XAI could be considered for illustrating complicated relationships within rock mechanics and energy-resource developments.

Ort, förlag, år, upplaga, sidor
Elsevier, 2021. Vol. 8, artikel-id 100034
Nyckelord [en]
Shap, Rock properties, Xgboost, Durability, Machine learning
Nationell ämneskategori
Mineral- och gruvteknik Annan samhällsbyggnadsteknik
Forskningsämne
Mineralteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-88275DOI: 10.1016/j.ringps.2021.100034OAI: oai:DiVA.org:ltu-88275DiVA, id: diva2:1619250
Anmärkning

Godkänd;2021;Nivå 0;2021-12-13 (beamah)

Tillgänglig från: 2021-12-13 Skapad: 2021-12-13 Senast uppdaterad: 2023-09-05Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Chelgani, S. Chehreh

Sök vidare i DiVA

Av författaren/redaktören
Chelgani, S. Chehreh
Av organisationen
Mineralteknik och metallurgi
Mineral- och gruvteknikAnnan samhällsbyggnadsteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 66 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf