Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Hybrid Ensemble-Learning Approach for Renewable Energy Resources Evaluation in Algeria
Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology, Mansoura, Egypt; Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura 35712, Egypt.
Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt.
Energies and Materials Research Laboratory, Faculty of Sciences and Technology, University of Tamanghasset, 10034, Tamanghasset, Algeria.
URERMS, Centre de Développement des Energies Renouvelables (CDER), 01000, Adrar, Algeria.
Visa övriga samt affilieringar
2022 (Engelska)Ingår i: Computers, Materials and Continua, ISSN 1546-2218, E-ISSN 1546-2226, Vol. 71, nr 3, s. 5837-5854Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In order to achieve a highly accurate estimation of solar energy resource potential, a novel hybrid ensemble-learning approach, hybridizing Advanced Squirrel-Search Optimization Algorithm (ASSOA) and support vector regression, is utilized to estimate the hourly tilted solar irradiation for selected arid regions in Algeria. Long-term measured meteorological data, including mean-air temperature, relative humidity, wind speed, alongside global horizontal irradiation and extra-terrestrial horizontal irradiance, were obtained for the two cities of Tamanrasset-and-Adrar for two years. Five computational algorithms were considered and analyzed for the suitability of estimation. Further two new algorithms, namely Average Ensemble and Ensemble using support vector regression were developed using the hybridization approach. The accuracy of the developed models was analyzed in terms of five statistical error metrics, as well as the Wilcoxon rank-sum and ANOVA test. Among the previously selected algorithms, K Neighbors Regressor and support vector regression exhibited good performances. However, the newly proposed ensemble algorithms exhibited even better performance. The proposed model showed relative root mean square errors lower than 1.448% and correlation coefficients higher than 0.999. This was further verified by benchmarking the new ensemble against several popular swarm intelligence algorithms. It is concluded that the proposed algorithms are far superior to the commonly adopted ones.

Ort, förlag, år, upplaga, sidor
Tech Science Press , 2022. Vol. 71, nr 3, s. 5837-5854
Nyckelord [en]
Arid region, Hybrid modeling, Renewable energy resources, Tilted solar irradiation
Nationell ämneskategori
Geoteknik och teknisk geologi
Forskningsämne
Geoteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-88960DOI: 10.32604/cmc.2022.023257ISI: 000770817300081Scopus ID: 2-s2.0-85122763323OAI: oai:DiVA.org:ltu-88960DiVA, id: diva2:1633013
Anmärkning

Validerad;2022;Nivå 2;2022-01-28 (johcin)

Tillgänglig från: 2022-01-28 Skapad: 2022-01-28 Senast uppdaterad: 2025-02-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Al-Ansari, Nadhir

Sök vidare i DiVA

Av författaren/redaktören
Al-Ansari, Nadhir
Av organisationen
Geoteknologi
I samma tidskrift
Computers, Materials and Continua
Geoteknik och teknisk geologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 173 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf