Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
EmmDocClassifier: Efficient Multimodal Document Image Classifier for Scarce Data
Department of Computer Science, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany.
German Research Institute for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, EISLAB.ORCID-id: 0000-0001-6158-3543
Luleå tekniska universitet, Institutionen för system- och rymdteknik, EISLAB.ORCID-id: 0000-0003-4029-6574
Visa övriga samt affilieringar
2022 (Engelska)Ingår i: Applied Sciences, E-ISSN 2076-3417, Vol. 12, nr 3, artikel-id 1457Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Document classification is one of the most critical steps in the document analysis pipeline. There are two types of approaches for document classification, known as image-based and multimodal approaches. Image-based document classification approaches are solely based on the inherent visual cues of the document images. In contrast, the multimodal approach co-learns the visual and textual features, and it has proved to be more effective. Nonetheless, these approaches require a huge amount of data. This paper presents a novel approach for document classification that works with a small amount of data and outperforms other approaches. The proposed approach incorporates a hierarchical attention network (HAN) for the textual stream and the EfficientNet-B0 for the image stream. The hierarchical attention network in the textual stream uses dynamic word embedding through fine-tuned BERT. HAN incorporates both the word level and sentence level features. While earlier approaches rely on training on a large corpus (RVL-CDIP), we show that our approach works with a small amount of data (Tobacco-3482). To this end, we trained the neural network at Tobacco-3482 from scratch. Therefore, we outperform the state-of-the-art by obtaining an accuracy of 90.3%. This results in a relative error reduction rate of 7.9%.

Ort, förlag, år, upplaga, sidor
MDPI, 2022. Vol. 12, nr 3, artikel-id 1457
Nyckelord [en]
BERT, document image classification, EfficientNet, fine-tuned BERT, hierarchical attention networks, Multimodal, RVL-CDIP, two-stream, Tobacco-3482
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Maskininlärning
Identifikatorer
URN: urn:nbn:se:ltu:diva-89454DOI: 10.3390/app12031457ISI: 000760057200001Scopus ID: 2-s2.0-85123633245OAI: oai:DiVA.org:ltu-89454DiVA, id: diva2:1642613
Anmärkning

Validerad;2022;Nivå 2;2022-03-07 (johcin)

Tillgänglig från: 2022-03-07 Skapad: 2022-03-07 Senast uppdaterad: 2023-09-05Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Mokayed, HamamLiwicki, Marcus

Sök vidare i DiVA

Av författaren/redaktören
Mokayed, HamamLiwicki, MarcusAfzal, Muhammad Zeshan
Av organisationen
EISLAB
I samma tidskrift
Applied Sciences
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 151 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf