Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Intelligent cost-effective winter road maintenance by predicting road surface temperature using machine learning techniques
Department of Industrial Engineering, UiT/The Arctic University of Norway, Narvik, 8514 Nordland, Norway.
Department of Industrial Engineering, UiT/The Arctic University of Norway, Narvik, 8514 Nordland, Norway.
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Strömningslära och experimentell mekanik.ORCID-id: 0000-0001-8225-989X
2022 (Engelska)Ingår i: Knowledge-Based Systems, ISSN 0950-7051, E-ISSN 1872-7409, Vol. 247, artikel-id 108682Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Since Winter Road Maintenance (WRM) is an important activity in Nordic countries, accurate intelligent cost-effective WRM can create precise advance plans for developing decision support systems to improve traffic safety on the roads, while reducing cost and negative environmental impacts. Lack of comprehensive knowledge and inaccurate WRM information would lead to a certain loss of WRM budget, safety reduction, and irreparable environmental damage. This study proposes an intelligent methodology that uses data envelopment analysis and machine learning techniques. In the proposed methodology, WRM efficiency is calculated by data envelopment analysis for different decision-making units (roads), and inefficient units need to be considered for further assessments. Therefore, road surface temperature is predicted by means of machine learning methods, in order to achieve efficient and effective WRM on the roads during winter in cold regions. In total, four different methods have been used to predict road surface temperature on an inefficient road. One of these is linear regression, which is a classical statistical regression technique (ordinary least square regression); the other three methods are machine-learning techniques, including support vector regression, multilayer perceptron artificial neural network, and random forest regression. Graphical and numerical results indicate that support vector regression is the most accurate method.

Ort, förlag, år, upplaga, sidor
Elsevier, 2022. Vol. 247, artikel-id 108682
Nyckelord [en]
Decision-making units, Decision support systems, Machine learning techniques, Road surface temperature, Winter road maintenance
Nationell ämneskategori
Infrastrukturteknik Datavetenskap (datalogi)
Forskningsämne
Experimentell mekanik
Identifikatorer
URN: urn:nbn:se:ltu:diva-90114DOI: 10.1016/j.knosys.2022.108682ISI: 000799715100010Scopus ID: 2-s2.0-85129458720OAI: oai:DiVA.org:ltu-90114DiVA, id: diva2:1650662
Anmärkning

Validerad;2022;Nivå 2;2022-06-01 (johcin)

Tillgänglig från: 2022-04-08 Skapad: 2022-04-08 Senast uppdaterad: 2022-11-02Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Casselgren, Johan

Sök vidare i DiVA

Av författaren/redaktören
Casselgren, Johan
Av organisationen
Strömningslära och experimentell mekanik
I samma tidskrift
Knowledge-Based Systems
InfrastrukturteknikDatavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 107 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf