Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Imagined Object Recognition Using EEG-Based Neurological Brain Signals
Luleå tekniska universitet, Institutionen för system- och rymdteknik, EISLAB.ORCID-id: 0000-0001-8532-0895
Data Ductus AB, Luleå, Sweden.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, EISLAB.ORCID-id: 0000-0001-9604-7193
Luleå tekniska universitet, Institutionen för system- och rymdteknik, EISLAB.ORCID-id: 0000-0002-9819-6931
Visa övriga samt affilieringar
2022 (Engelska)Ingår i: Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2021) / [ed] KC Santosh, Ravindra Hegadi, Umapada Pal, Springer, 2022, s. 305-319Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Researchers have been using Electroencephalography (EEG) to build Brain-Computer Interfaces (BCIs) systems. They have had a lot of success modeling brain signals for applications, including emotion detection, user identification, authentication, and control. The goal of this study is to employ EEG-based neurological brain signals to recognize imagined objects. The user imagines the object after looking at the same on the monitor screen. The EEG signal is recorded when the user thinks up about the object. These EEG signals were processed using signal processing methods, and machine learning algorithms were trained to classify the EEG signals. The study involves coarse and fine level EEG signal classification. The coarse-level classification categorizes the signals into three classes (Char, Digit, Object), whereas the fine-level classification categorizes the EEG signals into 30 classes. The recognition rates of 97.30%, and 93.64% were recorded at coarse and fine level classification, respectively. Experiments indicate the proposed work outperforms the previous methods.

Ort, förlag, år, upplaga, sidor
Springer, 2022. s. 305-319
Serie
Communications in Computer and Information Science (CCIS), ISSN 1865-0929, E-ISSN 1865-0937 ; 1576
Nyckelord [en]
Electroencephalography (EEG), Brain signals, Wavelet, Statistical features, Classification, Random forest (RF), Emotiv Epoc+
Nationell ämneskategori
Datavetenskap (datalogi) Människa-datorinteraktion (interaktionsdesign)
Forskningsämne
Maskininlärning
Identifikatorer
URN: urn:nbn:se:ltu:diva-91918DOI: 10.1007/978-3-031-07005-1_26Scopus ID: 2-s2.0-85131933234OAI: oai:DiVA.org:ltu-91918DiVA, id: diva2:1676981
Konferens
4th International Conference on Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2021),Msida (Online), Malta, December 8-10, 2021.
Anmärkning

ISBN for host publication: 978-3-031-07004-4 (print), 978-3-031-07005-1 (electronic)

Tillgänglig från: 2022-06-27 Skapad: 2022-06-27 Senast uppdaterad: 2025-02-05Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Saini, RajkumarUpadhyay, RichaRakesh, SumitChhipa, Prakash ChandraMokayed, HamamLiwicki, MarcusLiwicki, Foteini

Sök vidare i DiVA

Av författaren/redaktören
Saini, RajkumarUpadhyay, RichaRakesh, SumitChhipa, Prakash ChandraMokayed, HamamLiwicki, MarcusLiwicki, Foteini
Av organisationen
EISLAB
Datavetenskap (datalogi)Människa-datorinteraktion (interaktionsdesign)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 399 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf