Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Belief Rule Based Expert System to Diagnose Alzheimer’s Disease Using Whole Blood Gene Expression Data
Department of Computer Science and Engineering, University of Chittagong, Chittagong, 4331, Bangladesh.
Port City International University, Chittagong, Bangladesh.
Department of Computer Science and Engineering, University of Chittagong, Chittagong, 4331, Bangladesh.
Department of Computer Science and Engineering, University of Chittagong, Chittagong, 4331, Bangladesh.
Visa övriga samt affilieringar
2022 (Engelska)Ingår i: Brain Informatics: 15th International Conference, BI 2022, Padua, Italy, July 15–17, 2022, Proceedings / [ed] Mufti Mahmud, Jing He, Stefano Vassanelli, André van Zundert, Ning Zhong, Springer, 2022, s. 301-315Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Alzheimer’s disease (AD) is a degenerative neurological disease that is the most common cause of dementia. It is also the fifth-greatest reason for death in adults aged 65 and over. However, there is no accurate way of diagnosing neurological Alzheimer’s disorders in medical research. Blood gene expression analysis offers a realistic option for identifying those at risk of AD. Blood gene expression patterns have previously proved beneficial in diagnosing several brain disorders, despite the blood-brain barrier’s restricted permeability. The most extensively used statistical machine learning and deep learning algorithms are data-driven and do not address data uncertainty. Belief Rule-Based Expert System (BRBES) is an approach that can identify various forms of uncertainty in data and reason using evidential reasoning. No previous research studies have examined BRBES’ performance in diagnosing AD. As a result, this study aims to identify how effective BRBES is at diagnosing Alzheimer’s disease from blood gene expression data. We used a gradient-free technique to optimize the BRBES because prior research had shown the limits of gradient-based optimization. We have also attempted to address the class imbalance problem using BRBES’ consequent utility parameters. Finally, after 5-fold cross-validation, we compared our model to three classic ML models, finding that our model had a greater specificity than the other three models across all folds. The average specificity of our models for all folds was 32%

Ort, förlag, år, upplaga, sidor
Springer, 2022. s. 301-315
Serie
Lecture Notes in Computer Science, ISSN 0302-9743, E-ISSN 1611-3349 ; 13406
Nyckelord [en]
BRBES, Alzheimer’s disease, Gene expression data, Disjunctive BRBES, Class imbalance
Nationell ämneskategori
Annan data- och informationsvetenskap
Forskningsämne
Distribuerade datorsystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-92962DOI: 10.1007/978-3-031-15037-1_25ISI: 000878133000025Scopus ID: 2-s2.0-85136942425ISBN: 978-3-031-15036-4 (tryckt)ISBN: 978-3-031-15037-1 (digital)OAI: oai:DiVA.org:ltu-92962DiVA, id: diva2:1695155
Konferens
15th International Conference on Brain Informatics (BI 2022), Padua, Italy, July 15-17, 2022
Tillgänglig från: 2022-09-13 Skapad: 2022-09-13 Senast uppdaterad: 2023-09-05Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Islam, Raihan UlAndersson, Karl

Sök vidare i DiVA

Av författaren/redaktören
Islam, Raihan UlAndersson, Karl
Av organisationen
Datavetenskap
Annan data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 75 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf