Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Time Series Recovery Using Adjacent Channel Data Based on LSTM: A Case Study of Subway Vibrations
School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China; Beijing Key Laboratory of Track Engineering, Beijing Jiaotong University, Beijing 100044, China.ORCID-id: 0000-0002-4283-0913
School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China.
Beijing Municipal Institute of City Planning and Design, Beijing 100045, China.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik. School of Innovation, Design and Engineering, Mälardalen University, 63220 Eskilstuna, Sweden.ORCID-id: 0000-0002-7458-6820
Visa övriga samt affilieringar
2022 (Engelska)Ingår i: Applied Sciences, E-ISSN 2076-3417, Vol. 12, nr 22, artikel-id 11497Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Multi-sensor technology has been widely applied in the condition monitoring of rail transit. In practice, the data of some channels in the high channel counts are often abnormal or lost due to the abnormality and damage of the sensors, thus resulting in a large amount of data waste. A method for the data recovery of lost channels by using adjacent channel data is proposed to solve this problem. Based on the LSTM network algorithm, a data recovery model is established based on the “sequence-to-sequence” regression analysis of adjacent channel data. Taking the measured vibration data of a subway as an example, the network is trained with multi-channel measured data to recover the lost channel data of time-series characteristics. The results show that this multi-channel data recovery model is feasible, and the accuracy is up to 98%. This method can also further reduce the number of channels that need to be collected.

Ort, förlag, år, upplaga, sidor
MDPI, 2022. Vol. 12, nr 22, artikel-id 11497
Nyckelord [en]
multi-channel data, time-series recovery, neural network, regression analysis, data recovery, time domain, frequency domain
Nationell ämneskategori
Signalbehandling
Forskningsämne
Drift och underhållsteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-94135DOI: 10.3390/app122211497ISI: 000887061600001Scopus ID: 2-s2.0-85142849504OAI: oai:DiVA.org:ltu-94135DiVA, id: diva2:1711417
Anmärkning

Validerad;2022;Nivå 2;2022-11-21 (sofila);

Funder: Beijing Nova Program (Z191100001119126); the Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety (R202101); the Fundamental Research Funds for the Central Universities (2020JBM049); the 111 Project (B20040)

Tillgänglig från: 2022-11-17 Skapad: 2022-11-17 Senast uppdaterad: 2023-05-08Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Lin, Jing

Sök vidare i DiVA

Av författaren/redaktören
Xin, TaoLin, Jing
Av organisationen
Drift, underhåll och akustik
I samma tidskrift
Applied Sciences
Signalbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 117 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf