Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Advanced geochemical exploration knowledge using machine learning: Prediction of unknown elemental concentrations and operational prioritization of Re-analysis campaigns
Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario, K1A 0E8, Canada; Wits Mining Institute, University of the Witwatersrand, 1 Jan Smuts Ave., Johannesburg, 2000, South Africa.ORCID-id: 0000-0002-3952-3728
Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario, K1A 0E8, Canada; Wits Mining Institute, University of the Witwatersrand, 1 Jan Smuts Ave., Johannesburg, 2000, South Africa.
Wits Mining Institute, University of the Witwatersrand, 1 Jan Smuts Ave., Johannesburg, 2000, South Africa.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.ORCID-id: 0000-0002-5228-3888
2022 (Engelska)Ingår i: Artificial Intelligence in Geosciences, E-ISSN 2666-5441, Vol. 3, s. 86-100Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

While a re-analysis campaign in a geochemical exploration program modernizes legacy geochemical data by providing more trustworthy and higher-dimensional geochemical data, especially where modern data is considerably different than legacy data, it is an expensive exercise. The risk associated with modernizing such legacy data lies within its uncertainty in return (e.g., the possibility of new discoveries, in primarily greenfield settings). Without any advanced knowledge of yet unanalyzed elements, the importance of re-analyses remains ambiguous. To address this uncertainty, we apply machine learning to multivariate geochemical data from different regions in Canada (i.e., the Churchill Province and the Trans-Hudson Orogen) in order to use legacy geochemical data to predict modern and higher dimensional multi-elemental concentrations ahead of planned re-analyses. Our study demonstrates that legacy and modern geochemical data can be repurposed to predict yet unanalyzed elements that will be realized from re-analyses and in a manner that significantly reduces the latency to downstream usage of modern geochemical data (e.g., prospectivity mapping). Findings from this study serve as a pillar of a framework for exploration geologists to predictively explore and prioritize potentially mineralized districts for further prospects in a timely manner before employing more invasive and expensive techniques.

Ort, förlag, år, upplaga, sidor
Elsevier, 2022. Vol. 3, s. 86-100
Nyckelord [en]
Advanced exploration knowledge, Canada, Geochemical data, Machine learning, Re-purposing legacy data
Nationell ämneskategori
Geofysik Geokemi Datavetenskap (datalogi)
Forskningsämne
Mineralteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-94288DOI: 10.1016/j.aiig.2022.10.003ISI: 001353420200001Scopus ID: 2-s2.0-85141989622OAI: oai:DiVA.org:ltu-94288DiVA, id: diva2:1713794
Anmärkning

Validerad;2022;Nivå 1;2022-11-28 (hanlid);

Funder: Department of Science and Innovation (DSI)-National Research Foundation (NRF) (121973); DSI-NRF CIMERA

Tillgänglig från: 2022-11-28 Skapad: 2022-11-28 Senast uppdaterad: 2025-03-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Ghorbani, Yousef

Sök vidare i DiVA

Av författaren/redaktören
Zhang, Steven E.Ghorbani, Yousef
Av organisationen
Mineralteknik och metallurgi
I samma tidskrift
Artificial Intelligence in Geosciences
GeofysikGeokemiDatavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 63 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf