Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Using centrality measures, network cross k-function and geographically weighted regression as decision support for operational issues and redesigning sewers.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.ORCID-id: 0000-0001-8603-6941
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.ORCID-id: 0000-0003-1725-6478
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.ORCID-id: 0000-0001-9541-3542
2022 (Engelska)Ingår i: 10th International Conference on Sewer Processes and Networks, 2022Konferensbidrag, Muntlig presentation med publicerat abstract (Refereegranskat)
Abstract [en]

The topology of Sanitary Sewer Networks (SSNs) can play an influential role in the occurrence and magnitude of operational failures such as blockages and basements flooding (Reyes-Silva et al., 2020). For example, meshed (grid-like) topologies are reported to be less vulnerable to failures compared to branched (tree-like) topologies (Zhang et al., 2017). However, in reality, most SSNs are reported to have a predominantly branched topology (Reyes-Silva et al., 2020). Therefore, it could be argued that the spatial behaviour of operational failures may be related to the topological properties of SSNs. This study explored this argument by investigating the spatial association between the location of recurrent blockages and the location of influential nodes within the network. Graph theory–centrality measures (Ganesan et al., 2020) and the network cross-K-function (Okabe and Sugihara, 2012) were the methods used. Secondly, the question of which structural, hydraulic or environmental factors may explain the identified spatial associations was also explored using geographically weighted regression (Fotheringham and Charlton, 2009). In lieu of robust properly calibrated hydraulic models, results from centrality measures and network cross k-function can support the discovery of influential locations within the topology of SSNs that may propagate recurrent blockages. Such influential locations may also be inception points for remedial actions such as redesigning, which may be more cost-effective in the long term compared to conventional approaches like flushing. Results from a preliminary application of centrality measures and network cross-function to the SSN of one municipality (total network length 500 km, ≈40 people/km) using its historical blockage data are presented.

Ort, förlag, år, upplaga, sidor
2022.
Nationell ämneskategori
Vattenteknik
Forskningsämne
VA-teknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-94799OAI: oai:DiVA.org:ltu-94799DiVA, id: diva2:1717914
Konferens
10th International Conference on Sewer Processes and Networks (SPN10), Graz, Austria, August 24-26, 2022
Tillgänglig från: 2022-12-09 Skapad: 2022-12-09 Senast uppdaterad: 2023-09-05Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Conference website

Person

Okwori, EmmanuelViklander, MariaHedström, Annelie

Sök vidare i DiVA

Av författaren/redaktören
Okwori, EmmanuelViklander, MariaHedström, Annelie
Av organisationen
Arkitektur och vatten
Vattenteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 168 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf