Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Memory Enabled Segmentation of Terrain for Traversability based Reactive Navigation
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0000-0001-8132-4178
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0000-0002-0020-6020
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0000-0001-8870-6718
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0000-0003-0126-1897
2023 (Engelska)Ingår i: 2023 IEEE International Conference on Robotics and Biomimetics (ROBIO), IEEE, 2023Konferensbidrag, Publicerat paper (Refereegranskat)
Ort, förlag, år, upplaga, sidor
IEEE, 2023.
Nationell ämneskategori
Datorgrafik och datorseende Robotik och automation
Forskningsämne
Robotik och artificiell intelligens
Identifikatorer
URN: urn:nbn:se:ltu:diva-103974DOI: 10.1109/ROBIO58561.2023.10354930Scopus ID: 2-s2.0-85182558371ISBN: 979-8-3503-2570-6 (digital)ISBN: 979-8-3503-2571-3 (tryckt)OAI: oai:DiVA.org:ltu-103974DiVA, id: diva2:1832193
Konferens
2023 IEEE International Conference on Robotics and Biomimetics, ROBIO 2023, Koh Samui, Thailand, December 4-9, 2023
Forskningsfinansiär
EU, Horisont 2020, 101003591Tillgänglig från: 2024-01-29 Skapad: 2024-01-29 Senast uppdaterad: 2025-02-05Bibliografiskt granskad
Ingår i avhandling
1. Towards human-inspired perception in robotic systems by leveraging computational methods for semantic understanding
Öppna denna publikation i ny flik eller fönster >>Towards human-inspired perception in robotic systems by leveraging computational methods for semantic understanding
2024 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis presents a recollection of developments and results towards the research of human-like semantic understanding of the environment for robotics systems. Achieving a level of understanding in robots comparable to humans has proven to be a significant challenge in robotics, although modern sensors like stereo cameras and neuromorphic cameras enable robots to perceive the world in a manner akin to human senses, extracting and interpreting semantic information proves to be significantly inefficient by comparison. This thesis explores different aspects of the machine vision field to level computational methods in order to address real-life challenges for the task of semantic scene understanding in both everyday environments as well as challenging unstructured environments. 

The works included in this thesis present key contributions towards three main research directions. The first direction establishes novel perception algorithms for object detection and localization, aimed at real-life deployments in onboard mobile devices for %perceptually degraded unstructured environments. Along this direction, the contributions focus on the development of robust detection pipelines as well as fusion strategies for different sensor modalities including stereo cameras, neuromorphic cameras, and LiDARs. 

The second research direction establishes a computational method for levering semantic information into meaningful knowledge representations to enable human-inspired behaviors for the task of traversability estimation for reactive navigation. The contribution presents a novel decay function for traversability soft image generation based on exponential decay, by fusing semantic and geometric information to obtain density images that represent the pixel-wise traversability of the scene. Additionally, it presents a novel Encoder-Decoder lightweight network architecture for coarse semantic segmentation of terrain, integrated with a memory module based on a dynamic certainty filter.

Finally, the third research direction establishes the novel concept of Belief Scene Graphs, which are utility-driven extensions of partial 3D scene graphs, that enable efficient high-level task planning with partial information.The research thus presents an approach to meaningfully incorporate unobserved objects as nodes into an incomplete 3D scene graph using the proposed method Computation of Expectation based on Correlation Information (CECI), to reasonably approximate the probability distribution of the scene by learning histograms from available training data. Extensive simulations and real-life experimental setups support the results and assumptions presented in this work.

Ort, förlag, år, upplaga, sidor
Luleå: Luleå University of Technology, 2024
Serie
Licentiate thesis / Luleå University of Technology, ISSN 1402-1757
Nationell ämneskategori
Datorgrafik och datorseende
Forskningsämne
Robotik och artificiell intelligens
Identifikatorer
urn:nbn:se:ltu:diva-105329 (URN)978-91-8048-568-5 (ISBN)978-91-8048-569-2 (ISBN)
Presentation
2024-06-17, A117, Luleå University of Technology, Luleå, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2024-05-03 Skapad: 2024-05-03 Senast uppdaterad: 2025-02-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Saucedo, Mario A.V.Patel, AkashKanellakis, ChristoforosNikolakopoulos, George

Sök vidare i DiVA

Av författaren/redaktören
Saucedo, Mario A.V.Patel, AkashKanellakis, ChristoforosNikolakopoulos, George
Av organisationen
Signaler och system
Datorgrafik och datorseendeRobotik och automation

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 101 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf