Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Belief Scene Graphs: Expanding Partial Scenes with Objects through Computation of Expectation
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0000-0001-8132-4178
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0000-0002-0020-6020
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0000-0003-3794-0306
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0000-0001-8870-6718
Visa övriga samt affilieringar
2024 (Engelska)Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

In this article, we propose the novel concept of Belief Scene Graphs, which are utility-driven extensions of partial 3D scene graphs, that enable efficient high-level task planning with partial information. We propose a graph-based learning methodology for the computation of belief (also referred to as expectation) on any given 3D scene graph, which is then used to strategically add new nodes (referred to as blind nodes) that are relevant to a robotic mission. We propose the method of Computation of Expectation based on Correlation Information (CECI), to reasonably approximate real Belief/Expectation, by learning histograms from available training data. A novel Graph Convolutional Neural Network (GCN) model is developed, to learn CECI from a repository of 3D scene graphs. As no database of 3D scene graphs exists for the training of the novel CECI model, we present a novel methodology for generating a 3D scene graph dataset based on semantically annotated real-life 3D spaces. The generated dataset is then utilized to train the proposed CECI model and for extensive validation of the proposed method. We establish the novel concept of \textit{Belief Scene Graphs} (BSG), as a core component to integrate expectations into abstract representations. This new concept is an evolution of the classical 3D scene graph concept and aims to enable high-level reasoning for task planning and optimization of a variety of robotics missions. The efficacy of the overall framework has been evaluated in an object search scenario, and has also been tested in a real-life experiment to emulate human common sense of unseen-objects. 

For a video of the article, showcasing the experimental demonstration, please refer to the following link: \url{https://youtu.be/hsGlSCa12iY}

Ort, förlag, år, upplaga, sidor
IEEE, 2024. s. 9441-9447
Nationell ämneskategori
Datorgrafik och datorseende
Forskningsämne
Robotik och artificiell intelligens
Identifikatorer
URN: urn:nbn:se:ltu:diva-105326DOI: 10.1109/ICRA57147.2024.10611352ISI: 001369728000049Scopus ID: 2-s2.0-85202433848OAI: oai:DiVA.org:ltu-105326DiVA, id: diva2:1855833
Konferens
The 2024 IEEE International Conference on Robotics and Automation (ICRA2024), Yokohama, Japan, May 13-17, 2024
Anmärkning

Funder: European Union’s HorizonEurope Research and Innovation Programme (101119774 SPEAR);

ISBN for host publication: 979-8-3503-8457-4;

Tillgänglig från: 2024-05-03 Skapad: 2024-05-03 Senast uppdaterad: 2025-06-24Bibliografiskt granskad
Ingår i avhandling
1. Towards human-inspired perception in robotic systems by leveraging computational methods for semantic understanding
Öppna denna publikation i ny flik eller fönster >>Towards human-inspired perception in robotic systems by leveraging computational methods for semantic understanding
2024 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis presents a recollection of developments and results towards the research of human-like semantic understanding of the environment for robotics systems. Achieving a level of understanding in robots comparable to humans has proven to be a significant challenge in robotics, although modern sensors like stereo cameras and neuromorphic cameras enable robots to perceive the world in a manner akin to human senses, extracting and interpreting semantic information proves to be significantly inefficient by comparison. This thesis explores different aspects of the machine vision field to level computational methods in order to address real-life challenges for the task of semantic scene understanding in both everyday environments as well as challenging unstructured environments. 

The works included in this thesis present key contributions towards three main research directions. The first direction establishes novel perception algorithms for object detection and localization, aimed at real-life deployments in onboard mobile devices for %perceptually degraded unstructured environments. Along this direction, the contributions focus on the development of robust detection pipelines as well as fusion strategies for different sensor modalities including stereo cameras, neuromorphic cameras, and LiDARs. 

The second research direction establishes a computational method for levering semantic information into meaningful knowledge representations to enable human-inspired behaviors for the task of traversability estimation for reactive navigation. The contribution presents a novel decay function for traversability soft image generation based on exponential decay, by fusing semantic and geometric information to obtain density images that represent the pixel-wise traversability of the scene. Additionally, it presents a novel Encoder-Decoder lightweight network architecture for coarse semantic segmentation of terrain, integrated with a memory module based on a dynamic certainty filter.

Finally, the third research direction establishes the novel concept of Belief Scene Graphs, which are utility-driven extensions of partial 3D scene graphs, that enable efficient high-level task planning with partial information.The research thus presents an approach to meaningfully incorporate unobserved objects as nodes into an incomplete 3D scene graph using the proposed method Computation of Expectation based on Correlation Information (CECI), to reasonably approximate the probability distribution of the scene by learning histograms from available training data. Extensive simulations and real-life experimental setups support the results and assumptions presented in this work.

Ort, förlag, år, upplaga, sidor
Luleå: Luleå University of Technology, 2024
Serie
Licentiate thesis / Luleå University of Technology, ISSN 1402-1757
Nationell ämneskategori
Datorgrafik och datorseende
Forskningsämne
Robotik och artificiell intelligens
Identifikatorer
urn:nbn:se:ltu:diva-105329 (URN)978-91-8048-568-5 (ISBN)978-91-8048-569-2 (ISBN)
Presentation
2024-06-17, A117, Luleå University of Technology, Luleå, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2024-05-03 Skapad: 2024-05-03 Senast uppdaterad: 2025-02-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Saucedo, Mario Alberto ValdesPatel, AkashSaradagi, AkshitKanellakis, ChristoforosNikolakopoulos, George

Sök vidare i DiVA

Av författaren/redaktören
Saucedo, Mario Alberto ValdesPatel, AkashSaradagi, AkshitKanellakis, ChristoforosNikolakopoulos, George
Av organisationen
Signaler och system
Datorgrafik och datorseende

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 219 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf