Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Enhancing Tire Condition Monitoring through Weightless Neural Networks Using MEMS-Based Vibration Signals
School of Computer Science and Engineering (SCOPE), Vellore Institute of Technology, Chennai Campus, Vandalur Kelambakkam Road, Chennai 600127, India.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik.ORCID-id: 0000-0002-4034-8859
School of Mechanical Engineering (SMEC), Vellore Institute of Technology, Chennai Campus, Vandalur Kelambakkam Road, Chennai 600127, India.ORCID-id: 0000-0002-5323-6418
Sustainable Mobility Automobile Research Technology (SMART) Center, Department of Electronics and Communication Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India.ORCID-id: 0000-0002-0766-119X
Visa övriga samt affilieringar
2024 (Engelska)Ingår i: Journal of Engineering, ISSN 2314-4904, E-ISSN 2314-4912, artikel-id 1321775Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Tire pressure monitoring system (TPMS) has a critical role in safeguarding vehicle safety by monitoring tire pressure levels. Keeping the accurate tire pressure is necessary for confirming comfortable driving and safety, and improving fuel consumption. Tire problems can result from various factors, such as road surface conditions, weather changes, and driving activities, emphasizing the importance of systematic tire checks. This study presents a novel method for tire condition monitoring using weightless neural networks (WNN), which mimic neural processes using random-access memory (RAM) components, supporting fast and precise training. Wilkes, Stonham, and Aleksander Recognition Device (WiSARD), a type of WNN, stands out for its capability in classification and pattern recognition, gaining from its ability to avoid repetitive training and residual formation. For vibration data acquisition from tires, cost-effective micro-electro-mechanical system (MEMS) sensors are employed, offering a more economical solution than piezoelectric sensors. This approach yields a variety of features, such as autoregressive moving average (ARMA), statistical and histogram features. The J48 decision tree algorithm plays a critical role in selecting essential features for classification, which are subsequently divided into training and testing sets, crucial for assessing the WiSARD classifier’s efficacy. Hyperparameter optimization of the WNN leads to improved classification accuracy and shorter computation times. In practical tests, the WiSARD classifier, when optimally configured, achieved an impressive 97.92% accuracy with histogram features in only 0.008 seconds, showcasing the capability of WNN to enhance tire technology and the accuracy and efficiency of tire monitoring and maintenance.

Ort, förlag, år, upplaga, sidor
Hindawi Publishing Corporation, 2024. artikel-id 1321775
Nyckelord [en]
tire pressure monitoring system, fault diagnosis, weightless neural network, vibration signals, WiSARD classifier
Nationell ämneskategori
Reglerteknik Farkostteknik
Forskningsämne
Drift och underhållsteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-105432DOI: 10.1155/2024/1321775ISI: 001226852500001OAI: oai:DiVA.org:ltu-105432DiVA, id: diva2:1857145
Anmärkning

Validerad;2024;Nivå 1;2024-05-16 (hanlid);

Full text license: CC BY

Tillgänglig från: 2024-05-12 Skapad: 2024-05-12 Senast uppdaterad: 2024-06-20Bibliografiskt granskad

Open Access i DiVA

fulltext(917 kB)24 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 917 kBChecksumma SHA-512
eeb1c354cd99b31e607ec21c9640bcdf3b699a29457a277930cd96a878c7e804738449463dabdfd781b3334197e160ac9371323969af8d4b68bb8973da149eca
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Person

Venkatesh, Sridharan Naveen

Sök vidare i DiVA

Av författaren/redaktören
Venkatesh, Sridharan NaveenSugumaran, VaithiyanathanPrabhakaranpillai Sreelatha, AnoopMahamuni, Vetri Selvi
Av organisationen
Drift, underhåll och akustik
I samma tidskrift
Journal of Engineering
ReglerteknikFarkostteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 24 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 245 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf