Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Confidentiality Preserving Data Sharing for Life Cycle Assessment in Process Industries
Aalto University, Department of Electrical Engineering and Automation, Espoo, Finland.
Aalto University, Department of Electrical Engineering and Automation, Espoo, Finland.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap. Aalto University, Department of Electrical Engineering and Automation, Espoo, Finland.ORCID-id: 0000-0002-9315-9920
2024 (Engelska)Ingår i: 2024 IEEE 29th International Conference on Emerging Technologies and Factory Automation - ETFA 2024 / [ed] Tullio Facchinetti, Angelo Cenedese, Lucia Lo Bello, Stefano Vitturi, Thilo Sauter, Federico Tramarin, IEEE, 2024Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The pulp and paper industry faces significant en-vironmental challenges, such as air pollution, greenhouse gas emissions, and wastewater discharge, requiring smarter and more sustainable operations. Regulatory bodies are imposing stringent measures to mitigate these impacts, prompting the industry to adopt sustainable practices and technologies. Life Cycle Assessment (LCA) models are crucial in this effort, pro-viding a comprehensive evaluation of environmental impacts and aiding decision making for sustainable manufacturing. However, organisations prioritise the confidentiality of their sensitive data, which can hinder collaborative efforts and LCA calculations. This paper addresses organisational requirements for improving confidentiality, tamper-proof data transfer, and ensuring data sovereignty. The ongoing proof-of-concept introduces a novel approach in LCA, employing Secure Multiparty Computation (SMPC) and data spaces to enable confidentiality-preserving LCA. Our solution ensures data sovereignty and accurate LCA calculations, promoting sustainable practices across the value chain. This paper lays the foundation for a collaborative data platform that meets the critical needs of confidentiality, security, and sustainability in the process manufacturing industry.

Ort, förlag, år, upplaga, sidor
IEEE, 2024.
Nyckelord [en]
Confidentiality, Data spaces, Lifecycle Assessment (LCA), Privacy, Secure MultiParty Computation (SMPC)
Nationell ämneskategori
Annan elektroteknik och elektronik
Forskningsämne
Kommunikations- och beräkningssystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-110689DOI: 10.1109/ETFA61755.2024.10710738Scopus ID: 2-s2.0-85207839198OAI: oai:DiVA.org:ltu-110689DiVA, id: diva2:1912582
Konferens
IEEE International Conference on Emerging Technologies and Factory Automation (EFTA 2024), Padova, Italy, September 10-13, 2024
Anmärkning

Funder: Horison Europe  (8168/31/2022); Business Finland (8168/31/2022); 

ISBN for host publication: 979-8-3503-6123-0;

Tillgänglig från: 2024-11-12 Skapad: 2024-11-12 Senast uppdaterad: 2024-11-12Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Vyatkin, Valeriy

Sök vidare i DiVA

Av författaren/redaktören
Vyatkin, Valeriy
Av organisationen
Datavetenskap
Annan elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 46 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf