Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Hybrid prognosis for railway health assessment: an information fusion approach for PHM deployment
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik.ORCID-id: 0000-0002-4107-0991
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik.
2013 (engelsk)Inngår i: PHM2013: 2013 Prognostic and System Health Management: Milan 8-11 September 2013 / [ed] Enrico Zio; Piero Baraldi, AIDIC Servizi S.r.l. , 2013, s. 769-774Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Many railway assets suffer increasing wear and tear during operation. Prognostics can assist diagnosis by assessing the current health of a system and predicting its remaining life based on features that capture the gradual degradation in a system's operational capabilities. Prognostics are critical to improve safety, plan successful work, schedule maintenance, and reduce maintenance costs and down time. Unlike fault diagnosis, prognosis is a relatively new area, but it has become an important part of Condition-based Maintenance (CBM) of systems. As there are many prognostic techniques, usage must be attuned to particular applications. Broadly stated, prognostic methods are either data-driven or model-based. Each has advantages and disadvantages; consequently, they are often combined in hybrid applications. A approach hybrid model can combine some or all model types (data-driven, and phenomenological); thus, more complete information can be gathered, leading to more accurate recognition of the fault state. This approach is especially relevant in railway systems where the maintainer and operator know some of the failure mechanisms, but the complexity of the infrastructure and rolling stock is huge that there is no way to develop a complete model-based approach. Therefore, hybrid models are extremely useful for accurately estimating the Remaining Useful Life (RUL) of railway systems. The paper addresses the process of data aggregation into a hybrid model to get RUL values within logical confidence intervals so that the life cycle of railway assets can be managed and optimised

sted, utgiver, år, opplag, sider
AIDIC Servizi S.r.l. , 2013. s. 769-774
Serie
Chemical Engineering Transactions, ISSN 1974-9791 ; 33
HSV kategori
Forskningsprogram
Drift och underhållsteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-27143DOI: 10.3303/CET1333129ISI: 000337960300127Scopus ID: 2-s2.0-84883749621Lokal ID: 07c4dd91-fef5-4905-ad47-e86fb6922d91ISBN: 978-88-95608-24-2 (tryckt)OAI: oai:DiVA.org:ltu-27143DiVA, id: diva2:1000324
Konferanse
Prognostic and System Health Management Conference : 09/09/2013 - 11/09/2013
Merknad
Validerad; 2013; 20130930 (ysko)Tilgjengelig fra: 2016-09-30 Laget: 2016-09-30 Sist oppdatert: 2018-07-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Galar, DiegoKumar, UdayVillarejo, RobertoJohansson, Carl-Anders

Søk i DiVA

Av forfatter/redaktør
Galar, DiegoKumar, UdayVillarejo, RobertoJohansson, Carl-Anders
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 290 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf