Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The geometallurgical framework: Malmberget and Mikheevskoye case studies
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.ORCID-id: 0000-0002-9227-2470
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.ORCID-id: 0000-0003-4800-9533
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
2015 (engelsk)Inngår i: Mining Science, ISSN 2300-9586, Vol. 22, nr Special Issue 2, s. 57-66Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Geometallurgy is a growing area within a mineral processing industry. It brings together tasks of geologists and mineral processing engineers to do short and medium term production planning. However, it is also striving to deal with long term tasks such as changes in either production flow sheet or considering different scenarios. This paper demonstrates capabilities of geometallurgy through two case studies from perspective of Minerals and Metallurgical Engineering division Lulea University of Technology. A classification system of geometallurgical usages and approaches was developed in order to describe a working framework. A practical meaning of classification system was proved in two case studies: Mikheevskoye (Russia) and Malmberget (Sweden) projects. These case studies, where geometallurgy was applied in a rather systematic way, have shown the amount of work required for moving the project within the geometallurgical framework, which corresponds to shift of the projects location within the geometallurgical classification system.

sted, utgiver, år, opplag, sider
2015. Vol. 22, nr Special Issue 2, s. 57-66
HSV kategori
Forskningsprogram
Mineralteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-31817DOI: 10.5277/ms150206ISI: 000376381700007Lokal ID: 61ccc4ff-d06f-480f-8831-8077d0c50aa2OAI: oai:DiVA.org:ltu-31817DiVA, id: diva2:1005051
Konferanse
Conference of Doctoral students and Young Scientists : 20/05/2015 - 22/05/2015
Merknad

Godkänd; 2015; 20150629 (viklis); Konferensartikel i tidskrift

Tilgjengelig fra: 2016-09-30 Laget: 2016-09-30 Sist oppdatert: 2018-11-14bibliografisk kontrollert
Inngår i avhandling
1. Bringing predictability into a geometallurgical program: An iron ore case study
Åpne denne publikasjonen i ny fane eller vindu >>Bringing predictability into a geometallurgical program: An iron ore case study
2019 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Alternativ tittel[sv]
Skapande av predikterbarhet i ett geometallurgiskt program : en fallstudie med järbnmalm
Abstract [en]

The risks of starting, operating and closing mining projects have become higher than ever. In order to stay ahead of the competition, mining companies have to manage various risks: technical, environmental, legal, regulatory, political, cyber, financial and social. Some of these can be mitigated with the help of geometallurgy. Geometallurgy aims to link geological variability with responses in the beneficiation process by a wide usage of automated mineralogy, proxy metallurgical tests, and process simulation. However, traditional geometallurgy has neglected the non-technical aspects of mining. This has caused wide-spread discussion among researchers on the benefits of geometallurgy and its place in industry.

In order to improve predictability in geometallurgy, such programs should cover planning, and the testing of hypotheses, and only then should there be an attempt to develop suitable technical tools. Such approach would ensure that those tools would be useful and are needed, not only from the technical point of view, but also from the users’ perspective. Therefore, this thesis introduces methodology on how to decrease uncertainty in the production planning and thus determine how much effort to put into decreasing uncertainty in geometallurgical programs.

The predictability improvement of a geometallurgical program starts at the planning stage. The classification system developed here, through the survey (interviews) and literature review, indicates different ways to link geological information with metallurgical responses, and suggests areas where technical development is called for. The proposed developments can be tested before the start of the geometallurgical program with synthetic data. For the iron ore reference study (Malmberget), it was shown that implementation of geometallurgy is beneficial in terms of net present value (NPV) and internal rate of return (IRR), and building geometallurgical spatial model for the process properties (recovery and total concentrate tonnages), and that it requires fewer samples for making a reliable process prediction than concentrate quality. The new process and proxy for mineralogical characterisation models were developed as part of the geometallurgical program for the iron ore case study (Leveäniemi): an estimator of ore quality (ܺ௅்௎), a model for iron recovery in WLIMS, a model for iron-oxides liberation prediction. Additionally, it was found that DT may be applied only for studying marginal ores. The evaluation of different spatial process modelling methods showed that tree methods can be successfully employed in predicting non-additive variables (recoveries).

sted, utgiver, år, opplag, sider
Luleå: Luleå University of Technology, 2019
Serie
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Emneord
Additivity, Apatite iron ore, AIO, Block model, Change of support, Classification, Data integration, DT, Feed quality, Geometallurgical program, Geometallurgy, Iron ore, Iron recovery, Leveäniemi, Liberation, Machine learning, Magnetic separation, Malmberget, Mineralogical approach, Mineralogy, Prediction, Proxies, Proxies approach, Sampling, Simulation, Synthetic ore body, Traditional approach, WLIMS
HSV kategori
Forskningsprogram
Mineralteknik
Identifikatorer
urn:nbn:se:ltu:diva-71580 (URN)978-91-7790-266-9 (ISBN)978-91-7790-267-6 (ISBN)
Disputas
2019-02-04, D770, Lulea, 10:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2018-11-14 Laget: 2018-11-14 Sist oppdatert: 2019-02-07bibliografisk kontrollert

Open Access i DiVA

fulltext(478 kB)713 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 478 kBChecksum SHA-512
d8565f137bb1a74b373e51120a64a3fec0d74f7d0f44e8e2ce1501d020dd6dd96f5e89cdf77a8c8bf06d5bc5cc0d9ad760bfe6903d02360a4ce9d13203351bc0
Type fulltextMimetype application/pdf
fulltext(389 kB)56 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 389 kBChecksum SHA-512
67270fe096aa9adeca22a21ab25b8e2ae3e7cca14955c8a242729744f62a7a348bf72eef5be0e4e4402640ed3e67e9f1ea07c03e3ac7febe3f2c390d5fbce312
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fullteksthttp://www.miningscience.pwr.edu.pl/THE-GEOMETALLURGICAL-FRAMEWORK-MALMBERGET-AND-MIKHEEVSKOYE-CASE-STUDIES,59972,0,2.html

Personposter BETA

Lishchuk, ViktorKoch, Pierre-HenriLund, CeciliaLamberg, Pertti

Søk i DiVA

Av forfatter/redaktør
Lishchuk, ViktorKoch, Pierre-HenriLund, CeciliaLamberg, Pertti
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 769 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 378 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf