Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Elbow Joint Angle Estimation by Using Integrated Surface Electromyography
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0000-0003-0126-1897
Luleå tekniska universitet, Institutionen för hälsovetenskap, Hälsa och rehabilitering.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0000-0002-4310-7938
Vise andre og tillknytning
Rekke forfattare: 62016 (engelsk)Inngår i: 24th Mediterranean Conference on Control and Automation (MED): June 21-24, Athens, Greece, 2016, Piscataway, NJ: IEEE Communications Society, 2016, s. 785-790, artikkel-id 7535891Konferansepaper (Fagfellevurdert)
Abstract [en]

Electromyography (EMG) signals represent the electrical activation of skeletal muscles and contain valuable information about muscular activity. Estimation of the joint movements by using surface EMG signals has great importance as a bio-inspired approach for the control of robotic limbs and prosthetics. However interpreting surface EMG measurements is challenging due to the nonlinearity and user dependency of the muscle dynamics. Hence it requires complex computational methods to map the EMG signals and corresponding limb motions. To solve this challenge we here propose to use an integrated EMG signal to identify the EMG-joint angle relation instead of using common EMG processing techniques. Then we estimate the joint angles for elbow flexion-extension movement by using an auto-regressive integrated moving average with exogenous input (ARIMAX) model, which takes integrated EMG measurements as input. The experiments showed that the suggested approach results in a 21.85% average increase in the estimation performance of the elbow joint angle compared to the standard EMG processing and identification.

sted, utgiver, år, opplag, sider
Piscataway, NJ: IEEE Communications Society, 2016. s. 785-790, artikkel-id 7535891
Serie
Mediterranean Conference on Control and Automation, E-ISSN 2325-369X
Emneord [en]
Information technology - Automatic control
Emneord [sv]
Informationsteknik - Reglerteknik
HSV kategori
Forskningsprogram
Reglerteknik; Fysioterapi
Identifikatorer
URN: urn:nbn:se:ltu:diva-35118DOI: 10.1109/MED.2016.7535891ISI: 000391154900131Scopus ID: 2-s2.0-84986193000Lokal ID: 9862c70d-adec-409a-b5b4-43d7ec14fad7ISBN: 978-1-4673-8345-5 (digital)OAI: oai:DiVA.org:ltu-35118DiVA, id: diva2:1008370
Konferanse
Mediterranean Conference on Control and Automation : 21/06/2016 - 24/06/2016
Merknad

Godkänd; 2016; 20160419 (geonik)

Tilgjengelig fra: 2016-09-30 Laget: 2016-09-30 Sist oppdatert: 2017-11-25bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Mamikoglu, UmutNikolakopoulos, GeorgePauelsen, MaschaVaragnolo, DamianoRöijezon, UlrikGustafsson, Thomas

Søk i DiVA

Av forfatter/redaktør
Mamikoglu, UmutNikolakopoulos, GeorgePauelsen, MaschaVaragnolo, DamianoRöijezon, UlrikGustafsson, Thomas
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 384 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf