Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Vector coevolving particle swarm optimization algorithm
School of Computer Science and technology, Engineering Research Center of Digital Media Technology, Ministry of Education, Shandong University, Jinan.
School of Computer Science and technology, Engineering Research Center of Digital Media Technology, Ministry of Education, Shandong University, Jinan.
School of Computer Science and technology, Engineering Research Center of Digital Media Technology, Ministry of Education, Shandong University, Jinan.
Shandong Provincial Key Laboratory of Network based Intelligent Computing, University of Jinan.
Visa övriga samt affilieringar
Antal upphovsmän: 52017 (Engelska)Ingår i: Information Sciences, ISSN 0020-0255, E-ISSN 1872-6291, Vol. 394-395, s. 273-298Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In this paper, we propose a novel vector coevolving particle swarm optimization algorithm (VCPSO). In VCPSO, the full dimension of each particle is first randomly partitioned into several sub-dimensions. Then, we randomly assign either one of our newly designed scalar operators or learning operators to update the values in each sub-dimension. The scalar operators are designed to enhance the population diversity and avoid premature convergence. In addition, the learning operators are designed to enhance the global and local search ability. The proposed algorithm is compared with several other classical swarm optimizers on thirty-three benchmark functions. Comprehensive experimental results show that VCPSO displays a better or comparable performance compared to the other algorithms in terms of solution accuracy and statistical results.

Ort, förlag, år, upplaga, sidor
Elsevier, 2017. Vol. 394-395, s. 273-298
Nationell ämneskategori
Medieteknik
Forskningsämne
Distribuerade datorsystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-61834DOI: 10.1016/j.ins.2017.01.038ISI: 000396973000016Scopus ID: 2-s2.0-85012262497OAI: oai:DiVA.org:ltu-61834DiVA, id: diva2:1071719
Anmärkning

Validerad; 2017; Nivå 2; 2017-03-21 (rokbeg)

Tillgänglig från: 2017-02-06 Skapad: 2017-02-06 Senast uppdaterad: 2018-09-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Vasilakos, Athanasios

Sök vidare i DiVA

Av författaren/redaktören
Vasilakos, Athanasios
Av organisationen
Datavetenskap
I samma tidskrift
Information Sciences
Medieteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 56 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf