Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Power-to-gas and power-to-liquid for managing renewable electricity intermittency in the Alpine Region
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.ORCID-id: 0000-0002-4909-6643
Carnegie Institution for Science, Department of Global Ecology.
International Institute for Applied Systems Analysis (IIASA).
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.ORCID-id: 0000-0002-4597-4082
Vise andre og tillknytning
Rekke forfattare: 72017 (engelsk)Inngår i: Renewable energy, ISSN 0960-1481, E-ISSN 1879-0682, Vol. 107, s. 361-372Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Large-scale deployment of renewable energy sources (RES) plays a central role in reducing CO2 emissions from energy supply systems, but intermittency from solar and wind technologies presents integration challenges. High temperature co-electrolysis of steam and CO2 in power-to-gas (PtG) and power-to-liquid (PtL) configurations could utilize excess intermittent electricity by converting it into chemical fuels. These can then be directly consumed in other sectors, such as transportation and heating, or used as power storage. Here, we investigate the impact of carbon policy and fossil fuel prices on the economic and engineering potential of PtG and PtL systems as storage for intermittent renewable electricity and as a source of low-carbon heating and transportation energy in the Alpine region. We employ a spatially and temporally explicit optimization approach of RES, PtG, PtL and fossil technologies in the electricity, heating, and transportation sectors, using the BeWhere model. Results indicate that large-scale deployment of PtG and PtL technologies for producing chemical fuels from excess intermittent electricity is feasible, particularly when incentivized by carbon prices. Depending on carbon and fossil fuel price, 0.15−15 million tonnes/year of captured CO2 can be used in the synthesis of the chemical fuels, displacing up to 11% of current fossil fuel use in transportation. By providing a physical link between the electricity, transportation, and heating sectors, PtG and PtL technologies can enable greater integration of RES into the energy supply chain globally.

sted, utgiver, år, opplag, sider
Elsevier, 2017. Vol. 107, s. 361-372
HSV kategori
Forskningsprogram
Energiteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-61957DOI: 10.1016/j.renene.2017.02.020ISI: 000396946900032Scopus ID: 2-s2.0-85013158197OAI: oai:DiVA.org:ltu-61957DiVA, id: diva2:1073677
Merknad

Validerad; 2017; Nivå 2; 2017-03-01 (andbra)

Tilgjengelig fra: 2017-02-13 Laget: 2017-02-13 Sist oppdatert: 2018-09-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Mesfun, SennaiWetterlund, ElisabethLundgren, Joakim

Søk i DiVA

Av forfatter/redaktør
Mesfun, SennaiWetterlund, ElisabethLundgren, Joakim
Av organisasjonen
I samme tidsskrift
Renewable energy

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 323 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf