Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automated Control Configuration Selection Considering System Uncertainties
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system. Department of Electrical Engineering, University of Kufa, Najaf, Iraq.ORCID-id: 0000-0001-7598-4815
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0000-0002-9992-7791
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0000-0002-5888-8626
Rekke forfattare: 32017 (engelsk)Inngår i: Industrial & Engineering Chemistry Research, ISSN 0888-5885, E-ISSN 1520-5045, Vol. 56, nr 12, s. 3347-3359Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This paper proposes an automated pairing approach for configuration selection of decentralized controllers which considers system uncertainties. Following the Relative Interaction Array (RIA) pairing rules, the optimal control configuration, i.e. the configuration that fits best the pairing rules, is obtained automatically by formulating the control configuration selection problem as an Assignment Problem (AP). In this AP, the associated costs related to each input-output pairing are given by the RIA coefficients. The Push-Pull algorithm is used to solve the AP for the nominal system and to obtain the set of costs for which the resulting configuration remains optimal, also called the perturbation set. The introduction of uncertainty bounds on the RIA-based costs enables the testing of the possible violation of the optimality conditions. Examples to illustrate the proposed approach for a 3×3 system and 4×4 gasifier plant are given.

sted, utgiver, år, opplag, sider
American Chemical Society (ACS), 2017. Vol. 56, nr 12, s. 3347-3359
HSV kategori
Forskningsprogram
Reglerteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-62421DOI: 10.1021/acs.iecr.6b04035ISI: 000398248000021Scopus ID: 2-s2.0-85019961627OAI: oai:DiVA.org:ltu-62421DiVA, id: diva2:1080714
Prosjekter
OPTi Optimisation of District Heating Cooling systems, OPTiIntegrated Process Control based on Distributed In-Situ Sensors into Raw Material and Energy Feedstock, DISIRE
Forskningsfinansiär
EU, Horizon 2020, 649796EU, Horizon 2020, 636834VINNOVA
Merknad

Validerad; 2017; Nivå 2; 2017-03-29 (rokbeg)

Tilgjengelig fra: 2017-03-10 Laget: 2017-03-10 Sist oppdatert: 2018-12-14bibliografisk kontrollert
Inngår i avhandling
1. Selection of Decentralized Control Configuration for Uncertain Systems
Åpne denne publikasjonen i ny fane eller vindu >>Selection of Decentralized Control Configuration for Uncertain Systems
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Industrial processes nowadays involve hundreds or more of variables to be maintained within predefined ranges to achieve the production demands. However, the lack of accurate models and practical tools to design controllers for such large processes motivate the engineers/practitioners to break the processes down into smaller subsystems and applying decentralized controllers.

In contrast to the centralized controller, the decentralized controller is favourable in large-scale systems due to its robustness against loop failures and model uncertainties as well as being easier to tune and update. Yet, two steps are required prior to synthesizing these single-input single-output (SISO) controllers that comprise the decentralized controller. In the first step, a set of manipulated and the controlled variables need to be selected while the second step deals with pairing these variables to close the SISO control loops in a manner that limits the interaction between the loops. The latter step, called "input-output pairing", is usually performed by means of interaction measures (IM) tools using a nominal system model. Taking model uncertainties into consideration when deciding the pairing selection of the decentralized controller is necessary since adopting the pairing based on the nominal system model might be misleading and resulting in poor system performance or instability. It is therefore essential to have tools indicating the extent to which the pairing based on the nominal model persists against gain variations due to uncertainties.

The work in this thesis presents a methodology that determines whether the effect of gain uncertainty would invalidate the selected pairing. This has been done following the definition of the most established IM tool used in the industry, the relative gain array (RGA), and some of its variants. Further, a procedure has been developed to automatically obtain the optimal input-output pairing by formulating the pairing rules of relative interaction array (RIA) method as an \textit{assignment problem} (AP), and thus, simplifying the pairing selection for large-scale systems. Thereafter, uncertainty bounds of the RIA elements are employed to validate the pairing selection under the effect of given variations of the system gain. Moreover, following the RIA pairing rules, a method is proposed to calculate a minimum amount of uncertainty that renders a perturbed system for which the pairing, obtained from the nominal system model, becomes invalid.

In the aforementioned methodologies, a parametric system model is assumed to be known. To relax this constraint, an approach is therefore proposed and evaluated which identifies the pairing of the decentralized controller directly from the input-output data. This approach has the advantage of exempting the user from deriving a complete parametric model of the plant to decide the input-output pairing, and hence saves the efforts by finding the parameters of the most significant subsystems in a multivariable system. The frequency response of the system and its covariance, and subsequently the dynamic RGA (DRGA) and corresponding uncertainty bounds, are estimated from the input-output data by employing a nonparametric system identification approach. 

In short, the work presented in this thesis provides beneficial methodologies for researchers in academia as well as engineers in industry to predict the influence of the system gain uncertainty on the pairing selection of decentralized controllers.

sted, utgiver, år, opplag, sider
Luleå: Luleå University of Technology, 2018
Serie
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
HSV kategori
Forskningsprogram
Reglerteknik
Identifikatorer
urn:nbn:se:ltu:diva-67649 (URN)978-91-7790-053-5 (ISBN)978-91-7790-054-2 (ISBN)
Disputas
2018-04-10, A109, Luleå University of Technology, Luleå, 10:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2018-02-14 Laget: 2018-02-14 Sist oppdatert: 2018-03-23bibliografisk kontrollert

Open Access i DiVA

fulltext(1345 kB)97 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1345 kBChecksum SHA-512
1423b99630700592b291ab07f1f40e56350bb072f7f14981c7bc126de64599e66e862d6ae9b94eaa27ae85e8f49945a32206318d58f8309c9db61714996582f6
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Kadhim, AliCastaño Arranz, MiguelBirk, Wolfgang

Søk i DiVA

Av forfatter/redaktør
Kadhim, AliCastaño Arranz, MiguelBirk, Wolfgang
Av organisasjonen
I samme tidsskrift
Industrial & Engineering Chemistry Research

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 97 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 270 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf