Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Feature Extraction of a Strain-Gauge Signal Using Wavelets for Monitoring of a Tumbling Mill
LKAB, Research and Development, SE-983 81 Malmberget.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.ORCID-id: 0000-0002-8032-9388
LKAB, Research and Development, SE-983 81 Malmberget.
LKAB, Research and Development, SE-983 81 Malmberget.
2004 (Engelska)Ingår i: Elsevier IFAC Publications / IFAC Proceedings series, ISSN 1474-6670, Vol. 37, nr 15, s. 35-39Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Techniques that measure the force acting on a lifter bar, when it hits the charge inside a tumbling mill, have got an increased interest because of its direct physical relation to the behavior of the grinding charge. The possibility to combine it with discrete element modeling (DEM), which gives an opportunity to visualize the charge motion, opens new possibilities to understand the complex phenomena that takes place inside a grinding mill. In this work, a method for the measurement of the apparent filling level in a pilot ball mill, the Metso Continuous Charge Measurement system (CCM) has been used. The technique uses a strain gauge sensor, mounted on a flat steel spring, which is fitted into a recess underneath a lifter bar. Deflection of the lifter bar during every mill revolution will then give rise to a characteristic signal pattern depending on different operating conditions.

In this work, which should be treated as an introduction, we show how the discrete wavelet transform can be used in multivariate calibration. It will be shown that by using the fast wavelet transform on individual signals as a pre-processing method in regression modeling on CCM measurements, good compression is achieved with almost no loss of information. The predictive ability and diagnostics of the data compressed regression model is almost the same as for the uncompressed.

Ort, förlag, år, upplaga, sidor
2004. Vol. 37, nr 15, s. 35-39
Nationell ämneskategori
Metallurgi och metalliska material
Forskningsämne
Mineralteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-63372DOI: 10.1016/S1474-6670(17)30996-5OAI: oai:DiVA.org:ltu-63372DiVA, id: diva2:1095791
Konferens
11th IFAC Symposium on Automation in Mining, Mineral and Metal Processing (MMM'04), Nancy, France, September 8-10, 2004
Tillgänglig från: 2017-05-16 Skapad: 2017-05-16 Senast uppdaterad: 2018-02-28Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Pålsson, Bertil

Sök vidare i DiVA

Av författaren/redaktören
Pålsson, Bertil
Av organisationen
Mineralteknik och metallurgi
I samma tidskrift
Elsevier IFAC Publications / IFAC Proceedings series
Metallurgi och metalliska material

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 11 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf