Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Using long term synthetic time series to assess the impact of meteorological extreme events on renewable energy systems: a case study of wind and hydro power in Sweden
Institute for Sustainable Economic Development, University of Natural Resources and Life Sciences, Vienna, Austria.
Institute for Sustainable Economic Development, University of Natural Resources and Life Sciences, Vienna, Austria.
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.ORCID-id: 0000-0002-4597-4082
2017 (engelsk)Konferansepaper, Poster (with or without abstract) (Annet vitenskapelig)
Abstract [en]

Synthetic time series of renewable energy generation provide important inputs for energy system models that study the transition to low carbon energy systems. The coverage of national energy statistics is usually too short or temporal resolution too low – in particular if meteorological extreme events should be assessed. These extreme events may put high stress on power systems with very high shares of renewables and therefore have to be studied in detail. We use simulated time series of Swedish wind energy generation for a 35 year period based on MERRA reanalysis datasets. The simulation of hydropower generation is more complex and requires hydrological models that combine precipitation data with spatially explicit information on soil type and land cover to simulate river discharge. For this purpose, we use time series of daily river discharge that have been simulated using the open source model HYPE (HYdrological Predictions for the Environment).

We compared the derived time series for wind and hydropower generation in the four Swedish bidding areas with respect to their long-term correlation, patterns of seasonality, and length and duration of extreme events. Preliminary results show that expanding wind power capacities could significantly reduce the overall variability of renewable energy generation. Furthermore, the frequency and duration of extreme production events in a combined wind-hydropower system is lower than in a hydropower system only. Further work will study the need for backup capacities in a future Swedish power system with very high shares of hydro, wind and solar power (>90%).

sted, utgiver, år, opplag, sider
2017.
Serie
Geophysical Research Abstracts
HSV kategori
Forskningsprogram
Energiteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-63412OAI: oai:DiVA.org:ltu-63412DiVA, id: diva2:1096412
Konferanse
EGU General Assembly 2017, Vienna, Austria, 23-28 April 2017
Forskningsfinansiär
Swedish Research Council Formas, 942-2016-118Tilgjengelig fra: 2017-05-17 Laget: 2017-05-17 Sist oppdatert: 2017-11-24bibliografisk kontrollert

Open Access i DiVA

Poster(899 kB)259 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 899 kBChecksum SHA-512
b4429d62b09ede9fd3312d1908b8c20640981283ac5eb641e97402a3380a6e4c0d53efa2e79463516eaa59bc639f759653bf9ddf47346d8a84b2124e03e0273a
Type fulltextMimetype application/pdf

Andre lenker

http://meetingorganizer.copernicus.org/EGU2017/EGU2017-14131.pdf

Personposter BETA

Wetterlund, Elisabeth

Søk i DiVA

Av forfatter/redaktør
Wetterlund, Elisabeth
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 259 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 157 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf