Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Molecular Origin of Efficient Phonon Transfer in Modulated Polymer Blends: Effect of Hydrogen Bonding on Polymer Coil Size and Assembled Microstructure
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Maskinelement. Intelligent Composites Laboratory, Department of Chemical and Biomolecular Engineering, The University of Akron.
Intelligent Composites Laboratory, Department of Chemical and Biomolecular Engineering, The University of Akron.
Intelligent Composites Laboratory, Department of Chemical and Biomolecular Engineering, The University of Akron.
Intelligent Composites Laboratory, Department of Chemical and Biomolecular Engineering, The University of Akron.
Vise andre og tillknytning
2017 (engelsk)Inngår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 121, nr 26, s. 14204-14212Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Molecular level engineering of polymer or polymer blends has been recently demonstrated effective strategy to regulate thermal conductivity. Such materials are of great interest to meet critical requirements of transparent, light weight, flexible, etc for thermal management in electronic applications. In this work, modulated polymer blends with poly(vinyl alcohol) (PVA) and biopolymers (lignin, gelatin) were designed and significantly enhanced thermal conductivity was achieved by tuning the intermolecular interaction among polymer components. The hydrogen bond interaction has been revealed as the major driving force that affects the polymer coil dimension in aqueous solution, the microstructure of coil-coil interaction in solid film and thus the thermal conduction. A solid relationship across molecular level interaction to macro-scale thermal conduction is constructed via careful characterization of the coil size in liquid phase and assembled microstructure in solid phase. Appropriate integration of biopolymers and PVA is essential to achieve synergistic effect. Specifically, thermal conductivity of polymer blend with 10% lignin and 10% G90 in PVA reaches 0.71 W/m·K, which is 184% enhancement as compared to pure PVA. This work reveals the fundamental molecular origin of polymer blends in association with thermal conductivity and has great potential to guide molecular engineering for superior physicochemical properties.

sted, utgiver, år, opplag, sider
American Chemical Society (ACS), 2017. Vol. 121, nr 26, s. 14204-14212
HSV kategori
Forskningsprogram
Maskinelement
Identifikatorer
URN: urn:nbn:se:ltu:diva-64060DOI: 10.1021/acs.jpcc.7b03726ISI: 000405252800026Scopus ID: 2-s2.0-85024504405OAI: oai:DiVA.org:ltu-64060DiVA, id: diva2:1110261
Merknad

Validerad;2017;Nivå 2;2017-08-08 (rokbeg)

Tilgjengelig fra: 2017-06-15 Laget: 2017-06-15 Sist oppdatert: 2019-02-22bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Mu, LiwenShi, Yijun

Søk i DiVA

Av forfatter/redaktør
Mu, LiwenShi, Yijun
Av organisasjonen
I samme tidsskrift
The Journal of Physical Chemistry C

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 57 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf