Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Belief Rule based Expert System to Diagnose Dengue Fever under Uncertainty
University of Chittagong, Bangladesh.ORCID-id: 0000-0002-7473-8185
University of Chittagong.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap.ORCID-id: 0000-0003-0244-3561
2017 (engelsk)Inngår i: Proceedings of Computing Conference 2017 / [ed] Liming Chen, Nikola Serbedzija, Kami Makki, Nazih Khaddaj Mallat, Kohei Arai, Piscataway, NJ: Institute of Electrical and Electronics Engineers (IEEE), 2017, s. 179-186Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Dengue Fever is a debilitating mosquito-borne disease, causing sudden fever, leading to fatality in many cases. A Dengue patient is diagnosed by the physicians by looking at the various signs, symptoms and risk factors of this disease. However, these signs, symptoms and the risk factors cannot be measured with 100% certainty since various types of uncertainties such as imprecision, vagueness, ambiguity, and ignorance are associated with them. Hence, it is difficult for the physicians to diagnose the dengue patient accurately since they don’t consider the uncertainties as mentioned. Therefore, this paper presents the design, development and applications of an expert system by incorporating belief rule base as the knowledge representation schema as well as the evidential reasoning as the inference mechanism with the capability of handling various types of uncertainties to diagnose dengue fever. The results generated from the expert system are more reliable than from fuzzy rule based system or from human expert.

sted, utgiver, år, opplag, sider
Piscataway, NJ: Institute of Electrical and Electronics Engineers (IEEE), 2017. s. 179-186
HSV kategori
Forskningsprogram
Distribuerade datorsystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-64892DOI: 10.1109/SAI.2017.8252101ISI: 000426944400023Scopus ID: 2-s2.0-85046017063ISBN: 978-1-5090-5442-8 (digital)ISBN: 978-1-5090-5443-5 (digital)OAI: oai:DiVA.org:ltu-64892DiVA, id: diva2:1127778
Konferanse
Computing Conference 2017, London, 18-20 July 2017
Prosjekter
BRBWSN
Forskningsfinansiär
Swedish Research Council, 2014-4251Tilgjengelig fra: 2017-07-19 Laget: 2017-07-19 Sist oppdatert: 2018-05-07bibliografisk kontrollert

Open Access i DiVA

fulltext(657 kB)87 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 657 kBChecksum SHA-512
f07640ce8b8139e1eee6c8a7314f265baedea9387a42aceb175d1ba9468e482546c413655bc022cc2503284ac309787c66161420ca31c76ef95d44c8facac23b
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Hossain, Mohammad ShahadatAndersson, Karl

Søk i DiVA

Av forfatter/redaktør
Hossain, Mohammad ShahadatAndersson, Karl
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 87 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 355 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf