Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Plasmonic enhanced solar cells: Summary of possible strategies and recent results
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.ORCID-id: 0000-0002-3443-3707
School of Physics and Materials for Energy Research Group, University of the Witwatersrand, Johannesburg.
Historical Museum of Physics and Study & Research Centre “Enrico Fermi”.
2018 (Engelska)Ingår i: Renewable & sustainable energy reviews, ISSN 1364-0321, E-ISSN 1879-0690, Vol. 82, nr 3, s. 2433-2439Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Plasmonic structures for light manipulation at sub-wavelength scale have received great interest in the field of photovoltaic (PV) solar cells for their potential to significantly enhance the cell's efficiency.

The performance of any solar cell is determined by the capability to absorb incoming light and produce electric charges, which, in turn, has a number of limiting factors. One is related to the ever-reducing size and acceptance angle of the active region. Another is the limited spectral sensitivity of the active material, which cannot make use of significant parts of the solar spectrum.

Correspondingly, the energy harvesting may be improved in two ways, namely by adopting light trapping schemes and by exploiting spectral modification processes to shift frequencies of the solar spectrum, which are initially not absorbed, into the region of maximum absorption of the cell.

Plasmonic nanoparticles (NPs) can give a significant boost to both these aspects, by scattering and concentrating the electromagnetic field into the active region of the device, and by doing that within specific spectral regions, which can be properly tuned by optimizing the size, shape, distribution of the plasmonic NPs, and by choosing the right surrounding medium.

During the last ten years, many papers have been published on very specific issues, but also on general properties of plasmonics applied to solar cells, with a strong increase between 2006 and 2012, followed by a period of significant, but stable, literature productivity. Given these premises, an organized and schematic summary of the main strategies and of the recent results on the field is given in this review, where different plasmonic approaches are compared and discussed, also by recalling specific examples from the literature and providing a few key conclusions to understand the main aspects and the future perspectives of the field.

Ort, förlag, år, upplaga, sidor
Elsevier, 2018. Vol. 82, nr 3, s. 2433-2439
Nationell ämneskategori
Annan fysik
Forskningsämne
Experimentell fysik
Identifikatorer
URN: urn:nbn:se:ltu:diva-65525DOI: 10.1016/j.rser.2017.08.094ISI: 000418574800033OAI: oai:DiVA.org:ltu-65525DiVA, id: diva2:1139383
Anmärkning

Validerad;2018;Nivå 2;2018-01-25 (andbra)

Tillgänglig från: 2017-09-07 Skapad: 2017-09-07 Senast uppdaterad: 2018-02-02Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Enrichi, Francesco

Sök vidare i DiVA

Av författaren/redaktören
Enrichi, Francesco
Av organisationen
Materialvetenskap
I samma tidskrift
Renewable & sustainable energy reviews
Annan fysik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 169 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf