Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An ordinal classification approach for CTG categorization
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0000-0001-9701-4203
Laboratory of Knowledge and Intelligent Computing, Department of Computer Engineering, Technological Educational Institute of Epirus.
Department of Electrical Engineering and Computer Technology, University of Patras.
Laboratory of Knowledge and Intelligent Computing, Department of Computer Engineering, TEI of Epirus, Artas, Kostakioi.
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Piscataway, NJ: IEEE, 2017, s. 2642-2645, artikel-id 8037400Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Evaluation of cardiotocogram (CTG) is a standard approach employed during pregnancy and delivery. But, its interpretation requires high level expertise to decide whether the recording is Normal, Suspicious or Pathological. Therefore, a number of attempts have been carried out over the past three decades for development automated sophisticated systems. These systems are usually (multiclass) classification systems that assign a category to the respective CTG. However most of these systems usually do not take into consideration the natural ordering of the categories associated with CTG recordings. In this work, an algorithm that explicitly takes into consideration the ordering of CTG categories, based on binary decomposition method, is investigated. Achieved results, using as a base classifier the C4.5 decision tree classifier, prove that the ordinal classification approach is marginally better than the traditional multiclass classification approach, which utilizes the standard C4.5 algorithm for several performance criteria.

Ort, förlag, år, upplaga, sidor
Piscataway, NJ: IEEE, 2017. s. 2642-2645, artikel-id 8037400
Serie
ROCEEDINGS OF ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, ISSN 1094-687X
Nationell ämneskategori
Reglerteknik
Forskningsämne
Reglerteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-65661DOI: 10.1109/EMBC.2017.8037400ISI: 000427085303022Scopus ID: 2-s2.0-85032187388ISBN: 978-1-5090-2809-2 (digital)OAI: oai:DiVA.org:ltu-65661DiVA, id: diva2:1141600
Konferens
39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),Jeju Island, South Korea, 11-15 July 2017
Tillgänglig från: 2017-09-15 Skapad: 2017-09-15 Senast uppdaterad: 2018-04-19Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Georgoulas, GeorgiosNikolakopoulos, George

Sök vidare i DiVA

Av författaren/redaktören
Georgoulas, GeorgiosNikolakopoulos, George
Av organisationen
Signaler och system
Reglerteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 39 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf