Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Mathematical Morphology on Irregularly Sampled Data in One Dimension
Uppsala University.
Flagship Biosciences Inc, Colorado, USA.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system. Innovative Machine Vision Pty Ltd.ORCID-id: 0000-0001-6186-7116
Uppsala University.
2017 (Engelska)Ingår i: Mathematical Morphology : Theory and Applications, ISSN 2353-3390, Vol. 2, nr 1, s. 1-24Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Mathematical morphology (MM) on grayscale images is commonly performed in the discretedomain on regularly sampled data. However, if the intention is to characterize or quantify continuousdomainobjects, then the discrete-domain morphology is affected by discretization errors that may bealleviated by considering the underlying continuous signal, given a correctly sampled bandlimited image.Additionally, there are a number of applications where MM would be useful and the data is irregularlysampled. A common way to deal with this is to resample the data onto a regular grid. Often this createsproblems where data is interpolated in areas with too few samples. In this paper, an alternative way ofthinking about the morphological operators is presented. This leads to a new type of discrete operatorsthat work on irregularly sampled data. These operators are shown to be morphological operators thatare consistent with the regular, morphological operators under the same conditions, and yield accurateresults under certain conditions where traditional morphology performs poorly

Ort, förlag, år, upplaga, sidor
Walter de Gruyter, 2017. Vol. 2, nr 1, s. 1-24
Nyckelord [en]
mathematical morphology
Nationell ämneskategori
Signalbehandling
Forskningsämne
Signalbehandling
Identifikatorer
URN: urn:nbn:se:ltu:diva-66189DOI: 10.1515/mathm-2017-0001OAI: oai:DiVA.org:ltu-66189DiVA, id: diva2:1150576
Projekt
Noggranna bildbaserade mätningar genom oregelbunden sampling
Forskningsfinansiär
Vetenskapsrådet, E0598301Tillgänglig från: 2017-10-19 Skapad: 2017-10-19 Senast uppdaterad: 2021-03-11Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Thurley, Matthew

Sök vidare i DiVA

Av författaren/redaktören
Thurley, Matthew
Av organisationen
Signaler och system
Signalbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 162 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf