Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Identifying significance of human cognition in future maintenance operations
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik.ORCID-id: 0000-0001-8693-3431
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik.ORCID-id: 0000-0003-3827-0295
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik.
2018 (Engelska)Ingår i: Advances in Intelligent Systems and Computing, ISSN 2194-5357, E-ISSN 2194-5365, Vol. 722, s. 550-556Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Industrial maintenance in future will operate heavily with intelligent systems. Advanced sensor networks on machines will enable them communicate and learn about failure types, predict consequences and share solutions. Humans on the other hand are equipped with intuitive cognition that facilitates acquisition of knowledge about unique characteristics of individual machines, and use this knowledge in maintenance problem solving. In this article, we identify two major opportunities to collaborate human intuitive cognition with intelligent systems for future maintenance solutions.

Ort, förlag, år, upplaga, sidor
Springer, 2018. Vol. 722, s. 550-556
Nyckelord [en]
Industry 4.0, Maintenance, Intelligent systems, Intuitive cognition
Nationell ämneskategori
Annan samhällsbyggnadsteknik
Forskningsämne
Drift och underhållsteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-67026DOI: 10.1007/978-3-319-73888-8_86Scopus ID: 2-s2.0-85040218554ISBN: 978-3-319-73887-1 (digital)OAI: oai:DiVA.org:ltu-67026DiVA, id: diva2:1166507
Konferens
1st International Conference on Intelligent Human Systems Integration: Integrating People and Intelligent Systems, IHSI 2018; Dubai; United Arab Emirates; 7 - 9 January 2018
Anmärkning

Konferensartikel i tidskrift

Tillgänglig från: 2017-12-15 Skapad: 2017-12-15 Senast uppdaterad: 2020-01-30Bibliografiskt granskad
Ingår i avhandling
1. Soft Issues of Industry 4.0: A study on human-machine interactions
Öppna denna publikation i ny flik eller fönster >>Soft Issues of Industry 4.0: A study on human-machine interactions
2020 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Autonomous industrial operations are becoming the norm due to advancements in technology, which has led to both advantages and disadvantages for the organisations involved. The use of intelligent systems has resulted in higher system reliability, a higher quality product, and reduced risk for human error. These systems collect large amounts of information, analyse them, make predictions, and take decisions, of which humans cannot do in the same capacity, have led to new and expanded levels of interactions. One key aspect concerns the fact that human interaction has decreased although has become more critical than before. Even if the systems are advanced and automated, human intervention is still necessary: such as maintenance actions, selection of data to train the system, and advanced decision making. Human intervention is especially crucial when dealing with complex and safety critical systems, where and when immediate interventions are required. Moreover, an expert human can improvise and make novel decisions in a capacity that present intelligent systems cannot. The problem is that both humans and machines need assistance to perform well. Autonomous operation is not perfect and when problems arise, humans must react. Although it is common that humans when not actively interacting with the system tend to lose perspective and find it difficult to quickly analyse a situation when it arises. Which means that they “fall out of the loop”. Their ability to gain a good understanding of the situation and make good decisions when the system suddenly needs their interaction is lost. In other words, humans have lost their situation awareness (SA) and a good SA it is needed in dynamic environments if they are to intervene quickly and successfully. If, and when a system can assist a human to quickly assess the situation and get back “into the loop” then the human can make educated decisions in a much quicker fashion. The purpose of this research was to explore and describe the importance of SA in maintenance and to recommend how to develop and provide better SA for intelligent maintenance systems (IMS).

This thesis consists of a literature study conducted to develop the theoretical framework and two case studies were used to test the theoretical concepts. The thesis work tested five systematic methodologies to find suitable interventions to fulfil the SA requirements. The first case study focused on SA requirements during maintenance execution in a manufacturing organisation; there a quick return to production was the focus. The second case study was SA requirements in maintenance in the aviation domain, where safety is a top priority. The case study data were collected using interviews, observations, focus groups, and archival records. These qualitative data were analysed using qualitative content analysis, cognitive task analysis, and case taxonomic analysis.

This work resulted in the identification of seven key SA requirements for maintenance: consisting of detection of abnormalities; diagnosing and predicting their behaviour; making changes in system configuration; compliance with maintenance standards; conducting effective maintenance judgements; maintenance teams; and for safe maintenance work. Five strategies to maintain SA were identified: explicit knowledge status, sense making, recognition primed decision making, skilled intuition, and heuristics. We also argue why IMS will make it difficult for humans to use most of these strategies to maintain SA in future. Finally, a new theoretical model for decision support (Distributed Collaborative Awareness Model) was developed. The study also shows how to apply these interventions in the railway maintenance sector. In conclusion, this study shows that in the maintenance domain, keeping humans in the loop requires a novel collaborative approach where the integration of the strengths of intelligent systems and human cognition is necessary. We also argue that a better understanding of SA strategies will lead to the further development of SA support for the human operator and maintenance technician.

Ort, förlag, år, upplaga, sidor
Luleå: Luleå University of Technology, 2020
Serie
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Nationell ämneskategori
Produktionsteknik, arbetsvetenskap och ergonomi
Forskningsämne
Drift och underhållsteknik
Identifikatorer
urn:nbn:se:ltu:diva-77561 (URN)978-91-7790-528-8 (ISBN)978-91-7790-529-5 (ISBN)
Disputation
2020-03-26, Luleå, 10:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2020-01-31 Skapad: 2020-01-30 Senast uppdaterad: 2020-02-18Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Sök vidare i DiVA

Av författaren/redaktören
Illankoon, PrasannaTretten, PhillipKumar, Uday
Av organisationen
Drift, underhåll och akustik
I samma tidskrift
Advances in Intelligent Systems and Computing
Annan samhällsbyggnadsteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 190 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf