Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Cloud-Based Decision Support System for Self-Healing in Distributed Automation Systems Using Fault Tree Analysis
Shanghai Jiao Tong University, Department of Automation.
Stanford University, Department of Computer Science.
Shenyang Institute of Automation, China Academy of Science.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap. Aalto University, Espoo.ORCID-id: 0000-0002-9315-9920
Visa övriga samt affilieringar
2018 (Engelska)Ingår i: IEEE Transactions on Industrial Informatics, ISSN 1551-3203, E-ISSN 1941-0050, Vol. 14, nr 3, s. 989-1000Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Downtime is a key performance index for industrial automation systems. An industrial automation system achieves maximum productivity when its downtime is reduced to the minimum. One approach to minimize downtime is to predict system faults and recover from them automatically. A cloud-based decision support system is proposed for rapid problem identifications and to assist the self-management processes. By running multiple parallel simulations of control software with real-time inputs ahead of system time, faults could be detected and corrected automatically using autonomous industrial software agents. Fault trees, as well as control algorithms, are modeled using IEC 61499 function blocks that can be directly executed on both physical controllers and cloud services. A case study of water heating process is used to demonstrate the self-healing process supported by the cloud-based decision support system.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2018. Vol. 14, nr 3, s. 989-1000
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Kommunikations- och beräkningssystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-68137DOI: 10.1109/TII.2018.279150ISI: 000426700600017OAI: oai:DiVA.org:ltu-68137DiVA, id: diva2:1194541
Anmärkning

Validerad;2018;Nivå 2;2018-04-03 (andbra)

Tillgänglig från: 2018-04-03 Skapad: 2018-04-03 Senast uppdaterad: 2018-04-03Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Vyatkin, Valeriy
Av organisationen
Datavetenskap
I samma tidskrift
IEEE Transactions on Industrial Informatics
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 4163 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf