Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automatic annotation for human activity recognition in free living using a smartphone
Computer Science Research Institute, Ulster University, Newtownabbey BT370QB, UK.ORCID-id: 0000-0002-1870-0203
Computer Science Research Institute, Ulster University, Newtownabbey BT370QB, UK.
Computer Science Research Institute, Ulster University, Newtownabbey BT370QB, UK.
Computer Science Research Institute, Ulster University, Newtownabbey BT370QB, UK.
Visa övriga samt affilieringar
2018 (Engelska)Ingår i: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 18, nr 7, artikel-id 2203Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Data annotation is a time-consuming process posing major limitations to the development of Human Activity Recognition (HAR) systems. The availability of a large amount of labeled data is required for supervised Machine Learning (ML) approaches, especially in the case of online and personalized approaches requiring user specific datasets to be labeled. The availability of such datasets has the potential to help address common problems of smartphone-based HAR, such as inter-person variability. In this work, we present (i) an automatic labeling method facilitating the collection of labeled datasets in free-living conditions using the smartphone, and (ii) we investigate the robustness of common supervised classification approaches under instances of noisy data. We evaluated the results with a dataset consisting of 38 days of manually labeled data collected in free living. The comparison between the manually and the automatically labeled ground truth demonstrated that it was possible to obtain labels automatically with an 80–85% average precision rate. Results obtained also show how a supervised approach trained using automatically generated labels achieved an 84% f-score (using Neural Networks and Random Forests); however, results also demonstrated how the presence of label noise could lower the f-score up to 64–74% depending on the classification approach (Nearest Centroid and Multi-Class Support Vector Machine).

Ort, förlag, år, upplaga, sidor
MDPI, 2018. Vol. 18, nr 7, artikel-id 2203
Nationell ämneskategori
Medieteknik
Forskningsämne
Distribuerade datorsystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-70137DOI: 10.3390/s18072203PubMedID: 29987218Scopus ID: 2-s2.0-85050029995OAI: oai:DiVA.org:ltu-70137DiVA, id: diva2:1233786
Anmärkning

Validerad;2018;Nivå 2;2018-07-19 (inah)

Tillgänglig från: 2018-07-19 Skapad: 2018-07-19 Senast uppdaterad: 2018-08-08Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Personposter BETA

Synnes, KåreHallberg, Josef

Sök vidare i DiVA

Av författaren/redaktören
Cruciani, FredericoSynnes, KåreHallberg, Josef
Av organisationen
Datavetenskap
I samma tidskrift
Sensors
Medieteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 65 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf