Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Composite Bridges: Innovative ways of achieving composite action
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Fire Engineering.ORCID iD: 0000-0003-1435-0071
2018 (English)Doctoral thesis, comprehensive summary (Other academic)Alternative title
Samverkansbroar : Innovativa sätt att skapa samverkan (Swedish)
Abstract [en]

The topic of this thesis is steel-concrete composite bridges and innovative ways of achieving composite action. The typical superstructure consists of three main components: the steel girders, the concrete deck slab and the shear connectors. The latter connects the steel and the concrete parts to each other, which enables a design where the parts are assumed to act as one structural member, the composite beam.

The research presented in this thesis is primarily focused on different construction- and strengthening-methods, developed to reduce the impact on the road users, mainly by reducing the time spent on the construction site and the need of traffic restrictions.

The prefabricated steel girders give composite bridges some advantages in the construction stage, in comparison to the more common in-situ cast concrete bridges, since the girders can be launched or lifted into their final positions. Such an installation procedure is often favourable in case of crossings over roads, railways, rivers etc., since it minimizes the impact on the citizens using the infrastructure below the bridges and the need of temporary supports. In order to shorten the time spent on the construction site and to reduce the impact on the road users even more, prefabrication of the concrete deck can also be considered.

In this thesis, a review of different prefabrication techniques for composite bridges is presented, along with a study of one specific prefabrication concept that reduces the need of in-situ cast deck joints. This concept, with prefabricated concrete deck elements with dry joints, utilizes concrete shear keys to transfer shear forces over the transverse deck joints, while in-situ cast joints are used for the longitudinal connection between the steel girders and the concrete deck slab.

The structural behaviour of composite bridges with dry deck joints has been investigated by large scale beam tests, along with field measurements on a composite bridge built with this prefabrication concept. The load capacity of the shear keys has also been investigated by laboratory tests. The test results have been compared to numerical analyses and different design models, with the aim of developing design recommendations.

The results indicate that this type of bridges do not behave as conventional composite bridges with in-situ cast deck slabs. For single span bridges, which only experience positive bending moments, the structural behaviour in the ultimate limit state is close to the structural behaviour of conventional composite bridges. However, the degree of composite action is strongly reduced at lower load levels. This should be taken into account in the design in the fatigue- and the serviceability-limit states. Sections under negative bending moments behave in general as non-composite sections, which was expected due to the dry deck joints.

Based on the evaluation of the test results and the state -of-the-art review, design recommendations and design criteria are presented, along with production and execution recommendations for this type of prefabricated bridges.

Strengthening of existing bridges is another activity that often leads to traffic restrictions, which causes costs and troubles for the road users and the society. One method for strengthening non-composite steel-concrete bridges is post-installation of shear connectors, to create composite action. The composite cross-section has a larger stiffness and bending capacity, implying that a larger traffic load often can be allowed. It must however also be assured that other structural parts do not limit the load capacity of the structure.

There are several different types of shear connectors that can be used for post-installation, and some are more suitable than others. This thesis presents a state-of-the-art review on post-installed shear connectors in general and Coiled Spring Pins in particular. The latter is an interference fit connector that can be installed from below the bridge, with no or minor impact on the traffic on the bridge.

The behaviour of Coiled Spring Pins, used as shear connectors in composite bridges, has been investigated by experimental methods. Push-out tests have been used to study the static strength and the fatigue lifetime, while field monitoring of a real bridge structure has been used to study the behaviour on a structural level. The tests results have been evaluated and design criteria and design recommendations have been suggested.

The static tests and the following analysis show that Coiled Spring Pins are a very ductile type of shear connector, with a slightly different load-deformation behaviour than headed shear studs. The static strength of the shear connection shows a quite small spread even when different parameters are varied quite a lot. The performed fatigue tests in dicate a fatigue strength that are somewhat lower than headed studs, in terms of detail category, while previous test series by other researchers indicate a higher fatigue strength than headed studs. It can be noted that there is a large scatter between the results from different test series, performed by different researchers. The reasons to this scatter are discussed in the thesis and a conservative fatigue design criterion is presented.

The results from the field monitoring indicate that a bridge strengthened with Coiled Spring Pins behaves as a composite structure and that the Coiled Spring Pins reduce the slip significantly. The analysis of the test results shows that a design assuming full composite action, with rigid shear connection, describes the measured behaviour in a good way.

Based on the state-of-the-art review and the different tests performed, design recommendations and criteria are presented, along with production and execution recommendations for post-installation of Coiled Spring Pins.

Abstract [sv]

Ämnet för denna avhandling är samverkansbroar och innovativa sätt att skapa samverkan. Broöverbyggnaden består i regel av tre huvudkomponenter: stålbalkarna, betongfarbanan samt skjuvförbindarna. De sistnämnda binder samman stål- och betong-delarna, vilket möjliggör en dimensionering där de ingående delarna antas agera som en konstruktionsenhet, samverkansbalken.

Forskningen som presenteras i denna avhandling är framförallt fokuserad på olika konstruktions- och förstärknings-metoder, utvecklade för att minska påverkan på trafikanterna, huvudsakligen genom att reducera den tid som tillbringas på byggarbetsplatsen och därmed behovet av restriktioner för trafikanterna.

De prefabricerade stålbalkarna ger samverkansbroar en del fördelar i byggskedet, i jämförelse med de mer vanliga platsgjutna betongbroarna, eftersom stålbalkarna kan lanseras eller lyftas på plats. En sådan installationsprocedur är ofta fördelaktig för broar över vägar, järnvägar, älvar etc., eftersom den minimerar påverkan på de trafikanter som nyttjar infrastrukturen under bron samt behovet av temporära stöd. För att ytterligare reducera tiden på byggarbetsplatsen och påverkan på trafikanterna, kan även prefabricering av betongfarbanan övervägas.

I denna avhandling presenteras en genomgång av olika typer av prefabriceringstekniker för samverkansbroar, tillsammans med en studie av ett specifikt prefabriceringskoncept som reducerar behovet av platsgjutna fogar i farbanan. Detta koncept, med prefabricerade betongelement med torra fogar, nyttjar sig av betongklackar för att överföra skjuvkrafter i de tvärgående fogarna i brofarbanan, medan platsgjutna fogar används för den längsgående förbindningen mellan stålbalkarna och betongfarbanan.

Det statiska beteendet för samverkansbroar med torra farbanefogar har undersökts via storskaliga balktester, tillsammans med fältmätningar på en prefabricerad samverkansbro. Betongklackarnas lastkapacitet har också undersökts genom provning. Testresultaten har jämförts med numeriska analyser samt olika dimensioneringsmodeller, med målet att ta fram dimensionerings-rekommendationer.

Resultaten indikerar att denna typ av broar inte helt beter sig som konventionella samverkansbroar med platsgjutna farbanor. För enspanns-broar, som endast utsätts för positiva böjmoment, är beteendet i brottgränstillståndet snarlikt beteendet för en konventionell samverkansbro. Graden av samverkan är dock kraftigt reducerad vid lägre belastningsnivåer, vilket måste tas i beaktande vid dimensionering i bruksgränstillståndet respektive vid dimensionering för utmattning. Tvärsnitt utsatta för negativt böjmoment beter sig i allmänhet som icke-samverkans tvärsnitt, vilket var förväntat med tanke på de torra fogarna i farbanan.

Baserat på utvärderingen av testresultaten och litteraturstudien, presenteras dimensionerings-rekommendationer och -kriterier, tillsammans med produktions- och utförande-rekommendationer för denna typ av prefabriceringskoncept.

Förstärkning av befintliga broar är en annan aktivitet som ofta leder till trafikstörningar, vilket medför kostnader och problem för både trafikanterna och samhället i stort. En metod för att förstärka stål-betong balkbroar, som ursprungligen byggts utan samverkan, är att skapa samverkan genom efterinstallation av skjuvförbindare. Samverkanstvärsnittet har större styvhet och böjmotstånd, vilket innebär att högre trafiklaster ofta kan tillåtas. Det måste emellertid även säkerställas att andra konstruktionsdelar inte begränsar konstruktionens lastkapacitet.

Flertalet olika typer av skjuvförbindare kan användas för efterinstallation, vissa är dock mer lämpliga för detta än andra. Denna avhandling presenterar en litteraturstudie över efterinstallerade skjuvförbindare i allmänhet och spiralbultar (Coiled Spring Pins) i synnerhet. Den sistnämnda är en mekanisk presspassnings-förbindare som kan installeras underifrån bron, med ingen eller liten påverkan på trafiken uppe på bron.

Spiralbultarnas beteende, då de används som skjuvförbindare i samverkansbroar, har undersökts med experimentella metoder. Push-out-tester har använts för att studera den statiska lastkapaciteten och utmattningslivlängden, medan fältmätningar på en bro har använts för att studera konstruktionsbeteendet i större skala. Testresultaten har utvärderats och dimensionerings-kriterier och -rekommendationer har föreslagits.

De statiska testerna och den efterföljande analysen visar att spiralbultar är en väldigt duktil typ av skjuvförbindare, med ett något annorlunda last-deformations-samband än svetsbultar. Den statiska lastkapaciteten visar en ganska liten spridning även när olika parametrar varieras tämligen mycket. De utförda utmattningstesterna indikerar en utmattningskapacitet som är något lägre än den för svetsbultar, med avseende på detaljkategori, medan tidigare testserier av andra forskare indikerar en högre utmattningskapacitet än svetsbultar. Det kan noteras att det råder en stor spridning mellan resultaten från olika testserier, utförda av olika forskare. Anledningen till denna spridning diskuteras i avhandlingen och ett konservativt dimensioneringskriterium för utmattning presenteras.

Resultaten från fältmätningarna indikerar att en bro som förstärkts med spiralbultar beter sig som en samverkanskonstruktion och att spiralbultarna avsevärt reducerar glidningen i övergångsytan mellan stål och betong. Analysen av testresultaten visar att ett dimensioneringsantagande om full samverkan, med styv skjuvförbindning, beskriver det uppmätta beteendet på ett bra sätt.

Baserat på litteraturstudien och de utförda testerna, presenteras dimensionerings-rekommendationer och- kriterier, tillsammans med produktions- och utförande-rekommendationer för efterinstallation av spiralbultar.

 

Place, publisher, year, edition, pages
Luleå: Luleå University of Technology, 2018.
Series
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Keywords [en]
Composite action, bridges, steel, concrete, shear connectors, prefabrication, coiled spring pins, shear studs, post-installation, design guidance
National Category
Infrastructure Engineering
Research subject
Structural Engineering
Identifiers
URN: urn:nbn:se:ltu:diva-70890ISBN: 978-91-7790-201-0 (print)ISBN: 978-91-7790-202-7 (electronic)OAI: oai:DiVA.org:ltu-70890DiVA, id: diva2:1249244
Public defence
2018-11-15, D770, Luleå, 09:00 (English)
Opponent
Supervisors
Available from: 2018-09-25 Created: 2018-09-18 Last updated: 2019-09-11Bibliographically approved
List of papers
1. Prefabricated bridge construction across Europe and America
Open this publication in new window or tab >>Prefabricated bridge construction across Europe and America
2012 (English)In: Practice Periodical on Structural Design and Construction, ISSN 1084-0680, E-ISSN 1943-5576, Vol. 17, no 3, p. 82-92Article in journal (Refereed) Published
Abstract [en]

Determining the most efficient and economical way to build a new or replacement bridge is not as straightforward a process as it once was. The total cost of a bridge project is not limited to the amount spent on concrete, steel, and labor. Construction activities disrupt the typical flow of traffic around the project and results in additional costs to the public in the form of longer wait times, additional mileage traveled to get around the work zone, or business lost attributable to customers avoiding the construction. The risk of injury to workers because of traffic interactions or construction activities increase with each hour spent at the construction site. Finding a way to shorten the time spent on the jobsite is beneficial to the contractor, the owner, and the traveling public. Prefabricating certain bridge elements reduces the time spent at the construction site and reduces the effects on the road users and the surrounding community. For example, steel beams with composite concrete decks reduce the construction time over cast-in-place concrete superstructures. In some instances, entire structures have been fabricated off-site under strict environmental and quality controls and then shipped to the site and erected in a matter of days instead of months. The total cost of using prefabricated bridge elements (PBE) depends greatly on the scale of the prefabrication. The more that prefabrication is used, the lower the costs. Even under limited use, however, prefabrication is usually comparable to traditional construction techniques. However, when durability and user costs are taken into account, the overall cost may be significantly less than traditional pieceby-piece construction. To improve the competitiveness of prefabricated composite bridges, a European research and development project, ELEM RFSR-CT-2008-00039, was started in 2008. The overall objective of the project is to make prefabricated bridges more competitive through development of new cost-effective, time-efficient, and sustainable bridge structures. The project has started with a knowledge extension, in the form of the workshop on “Composite Bridges with Prefabricated Deck Elements.” This workshop was held in Stockholm, Sweden, in March 2009 to share the knowledge and experience gained by agencies around the globe. During the workshop, experiences from Europe and the United States were presented in an effort to promote the use of accelerated bridge construction (ABC) and prefabricated bridge elements.

National Category
Infrastructure Engineering
Research subject
Structural Engineering
Identifiers
urn:nbn:se:ltu:diva-7277 (URN)10.1061/(ASCE)SC.1943-5576.0000116 (DOI)59e537b5-c33d-44a9-8b18-8f25939c1460 (Local ID)59e537b5-c33d-44a9-8b18-8f25939c1460 (Archive number)59e537b5-c33d-44a9-8b18-8f25939c1460 (OAI)
Note
Validerad; 2012; 20120816 (ysko)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2018-09-18Bibliographically approved
2. Innovative prefabricated composite bridges
Open this publication in new window or tab >>Innovative prefabricated composite bridges
2009 (English)In: Structural Engineering International, ISSN 1016-8664, E-ISSN 1683-0350, Vol. 19, no 1, p. 69-79Article in journal (Refereed) Published
Abstract [en]

The competitiveness of composite bridges depends on different circumstances such as site conditions, local costs of material and staff, and the experience of the contractor. Two major advantages of composite bridges compared to concrete bridges are the ability of the steel girders to carry the weight of the formwork and the fresh concrete, and the shorter construction time which not only saves money for the contractor but even more for the road users. A further step is to prefabricate not only the steel girders, but also the concrete deck. In this paper, a new concept for composite bridges is described, with dry joints between the prefabricated concrete elements. The principal of the technique is presented, as well as some laboratory test simulating the load situation at an internal support in a multi-span bridge. Also, some experiences from an already built single span composite bridge with dry joints are presented.

National Category
Infrastructure Engineering
Research subject
Structural Engineering
Identifiers
urn:nbn:se:ltu:diva-2809 (URN)08171b00-2363-11de-a8de-000ea68e967b (Local ID)08171b00-2363-11de-a8de-000ea68e967b (Archive number)08171b00-2363-11de-a8de-000ea68e967b (OAI)
Note
Validerad; 2009; 20090407 (andbra)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2018-09-18Bibliographically approved
3. Concrete shear keys in prefabricated bridges with dry deck joints
Open this publication in new window or tab >>Concrete shear keys in prefabricated bridges with dry deck joints
2011 (English)In: Nordic Concrete Research, ISSN 0800-6377, Vol. 2011, no 44Article in journal (Refereed) Published
Abstract [en]

A prefabricated concrete deck with dry joints between deck elements has been developed to make prefabricated bridges even more competitive. This type of bridge deck has been used on single span bridges in Sweden, and is now under development for multi span bridges. This paper describes how the deck system works. Results from laboratory tests of shear keys between deck elements are also presented together with an analysis comparing the predicted capacity with the measured failure load.

Keywords
Civil engineering and architecture - Building engineering, Samhällsbyggnadsteknik och arkitektur - Byggnadsteknik
National Category
Infrastructure Engineering
Research subject
Structural Engineering
Identifiers
urn:nbn:se:ltu:diva-5322 (URN)36369295-16c2-49ee-8db0-e10630c2b926 (Local ID)36369295-16c2-49ee-8db0-e10630c2b926 (Archive number)36369295-16c2-49ee-8db0-e10630c2b926 (OAI)
Note
Validerad; 2011; 20111215 (petcol)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2018-09-18Bibliographically approved
4. The behaviour of a prefabricated composite bridge with dry deck joints
Open this publication in new window or tab >>The behaviour of a prefabricated composite bridge with dry deck joints
2013 (English)In: Structural Engineering International, ISSN 1016-8664, E-ISSN 1683-0350, Vol. 23, no 1, p. 47-54Article in journal (Refereed) Published
Abstract [en]

This paper describes the monitoring of a one-span composite bridge in northern Sweden. The bridge was built in 2000, with prefabricated deck elements connected to steel girders, and the back walls as well as the piers were also prefabricated. The monitoring was required to clarify the doubts regarding whether a bridge with dry deck joints can be expected to perform as a conventional composite bridge, with in situ cast deck and sections with sagging moments. To get a better understanding of the long-term structural behaviour, the bridge was monitored both during 2001 and 2011, instrumented with equipment measuring the deflections and strains in the steel cross section. The bridge was loaded with a truck in midspan having a total weight of 25 t. When the truck was centred between the girders, the results showed a symmetric behaviour, with respect to deflections and stresses. For the case with the truck stationed right above one of the steel girders, anti-symmetric behaviour was observed and studied by means of finite element calculations, taking into account the stiffness of the composite section as well as the end screens and the earth pressure below them.

National Category
Infrastructure Engineering Building Technologies
Research subject
Structural Engineering; Steel Structures
Identifiers
urn:nbn:se:ltu:diva-13938 (URN)10.2749/101686613X13439149157632 (DOI)000314382200011 ()2-s2.0-84874087272 (Scopus ID)d4157205-d9ad-453e-ac39-e0b0582dbafa (Local ID)d4157205-d9ad-453e-ac39-e0b0582dbafa (Archive number)d4157205-d9ad-453e-ac39-e0b0582dbafa (OAI)
Note
Validerad; 2013; 20130302 (petcol)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2018-09-18Bibliographically approved
5. Large-scale tests on a composite bridge with prefabricated concrete deck and dry deck joints
Open this publication in new window or tab >>Large-scale tests on a composite bridge with prefabricated concrete deck and dry deck joints
2013 (English)In: Stahlbau, ISSN 0038-9145, E-ISSN 1437-1049, Vol. 82, no 2, p. 122-133Article in journal (Refereed) Published
Abstract [en]

This paper describes the large-scale tests on a composite bridge with prefabricated deck elements and dry joints between the elements. The work is part of the European R&D project ELEM (RFCS-CT-2008-00039). This type of bridge has been used for three single-span bridges in Sweden and has contributed to minimizing construction time as well as disturbance to traffi c. The behaviour at midspan and the behaviour over an internal support of a continuous bridge were studied in the tests, and the results analysed by FEM and discussed. Conclusions regarding the design of this type of bridge are drawn, with respect to the global analysis as well as cross-section capacity.

National Category
Building Technologies Infrastructure Engineering
Research subject
Steel Structures; Structural Engineering
Identifiers
urn:nbn:se:ltu:diva-4494 (URN)10.1002/stab.201310014 (DOI)26edf4f0-73a5-4596-8771-e9cfd3a265f0 (Local ID)26edf4f0-73a5-4596-8771-e9cfd3a265f0 (Archive number)26edf4f0-73a5-4596-8771-e9cfd3a265f0 (OAI)
Note
Validerad; 2013; 20130204 (andbra)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2018-09-18Bibliographically approved
6. Strengthening Bridges with Postinstalled Coiled Spring Pin Shear Connectors: State-of-the-Art Review
Open this publication in new window or tab >>Strengthening Bridges with Postinstalled Coiled Spring Pin Shear Connectors: State-of-the-Art Review
2019 (English)In: Practice Periodical on Structural Design and Construction, ISSN 1084-0680, E-ISSN 1943-5576, Vol. 24, no 1, article id 03118001Article in journal (Refereed) Published
Abstract [en]

Many existing bridge structures experience much more significant loads and load cycles than were anticipated when the bridges were originally designed. An effective way to increase the load capacity and fatigue resistance of steel girder with non-composite concrete deck bridge structures is to retrofit the structure with shear connectors to create a composite girder-deck structure. This paper presents a state-of the art study of post-installed shear connectors in general and coiled spring connectors in particular. The strengthening method is described together with experiences from real bridge strengthening projects, along with a study of load capacity and structural behavior.

Place, publisher, year, edition, pages
American Society of Civil Engineers (ASCE), 2019
Keywords
Shear connector, composite action, coiled spring pin, bridge strengthening, rehabilitation, bridge
National Category
Infrastructure Engineering
Research subject
Structural Engineering
Identifiers
urn:nbn:se:ltu:diva-70887 (URN)10.1061/(ASCE)SC.1943-5576.0000394 (DOI)000453221500002 ()2-s2.0-85056078406 (Scopus ID)
Note

Validerad;2018;Nivå 2;2018-12-05 (johcin)

Available from: 2018-09-18 Created: 2018-09-18 Last updated: 2019-01-30Bibliographically approved
7. Post-Installed Shear Connectors: Monitoring a Bridge Strengthened with Coiled Spring Pins
Open this publication in new window or tab >>Post-Installed Shear Connectors: Monitoring a Bridge Strengthened with Coiled Spring Pins
2019 (English)In: Structural Engineering International, ISSN 1016-8664, E-ISSN 1683-0350, Vol. 29, no 2, p. 225-233Article in journal (Refereed) Published
Abstract [en]

Traffic density and vehicle weight have been increasing over time, which implies that many existing road bridges were not designed for the high service loads and increased number of load cycles that they are subjected to today. One way to increase the traffic load capacity of non-composite steel–concrete bridges is to post-install shear connectors. This paper presents a study of a steel–concrete bridge that has been strengthened with post-installed coiled spring pins, a type of connector which can be installed from below while the bridge is still in service. The strengthening method and design procedure are presented, along with the results from field monitoring performed to evaluate the behaviour of the strengthened structure. The results from the strengthened and non-strengthened sections show that the coiled spring pins counteract the slip and increases the degree of composite action. Finite-element models of the field tests were created in order to compare the results using different design assumptions and establish a suitable level of detail for modelling the shear connectors.

Place, publisher, year, edition, pages
Taylor & Francis, 2019
Keywords
shear connector, composite action, monitoring, strengthening, coiled spring pin
National Category
Other Civil Engineering
Research subject
Structural Engineering
Identifiers
urn:nbn:se:ltu:diva-70192 (URN)10.1080/10168664.2018.1456893 (DOI)000472557400004 ()2-s2.0-85055508944 (Scopus ID)
Note

Validerad;2019;Nivå 2;2019-07-10 (johcin)

Available from: 2018-08-01 Created: 2018-08-01 Last updated: 2019-07-10Bibliographically approved
8. Post-installed Shear Connectors: Push-out Tests of Coiled Spring Pins vs. Headed Studs
Open this publication in new window or tab >>Post-installed Shear Connectors: Push-out Tests of Coiled Spring Pins vs. Headed Studs
2019 (English)In: Journal of constructional steel research, ISSN 0143-974X, E-ISSN 1873-5983, Vol. 161, p. 1-16Article in journal (Refereed) Published
Abstract [en]

Steadily increasing traffic volumes and traffic loads lead to a continuously growing demand for bridge rehabilitation, strengthening and replacement projects. For existing steel girder bridges with non-composite concrete decks, the traffic load capacity can often be increased significantly if composite action can be created afterwards. Different kinds of shear connectors are more or less suitable for post-installation. Coiled spring pins are one type of interference fit connector that can be installed from below the bridge deck during traffic, in order to minimize the impact on road users. This paper describes an experimental study on the static capacity and stiffness of coiled spring pins used as shear connectors at steel-concrete interfaces. Six push-out test series are presented, with a total of 28 tests, together with an alternative type of test set-up. The results show that the failure of the coiled spring pins is very ductile and that the load capacity is predictable and sufficient for a cost-effective application. The tests also indicate a significantly lower stiffness of the connectors in comparison to welded headed studs of similar dimensions, which might be of great importance if an existing shear connection is strengthened.

Place, publisher, year, edition, pages
Elsevier, 2019
Keywords
push-out test, coiled spring pin, headed shear studs, strengthening, shear connector, post installation, composite, steel, concrete
National Category
Infrastructure Engineering Other Civil Engineering
Research subject
Structural Engineering
Identifiers
urn:nbn:se:ltu:diva-70888 (URN)10.1016/j.jcsr.2019.06.009 (DOI)000488660300001 ()2-s2.0-85068071491 (Scopus ID)
Note

Validerad;2019;Nivå 2;2019-07-08 (johcin)

Available from: 2018-09-18 Created: 2018-09-18 Last updated: 2019-10-18Bibliographically approved
9. Post-installed shear connectors: Fatigue push-out tests of coiled spring pins
Open this publication in new window or tab >>Post-installed shear connectors: Fatigue push-out tests of coiled spring pins
2019 (English)In: Journal of constructional steel research, ISSN 0143-974X, E-ISSN 1873-5983, Vol. 153, p. 298-309Article in journal (Refereed) Published
Abstract [en]

The number of heavy vehicles and their weight have been increasing over time, implying that many bridges are experiencing traffic loads with higher magnitude and frequency than they were originally designed for. In some cases, it will be necessary to either replace or strengthen the structures to keep the bridges in service. For existing non-composite steel girder bridges, post-installation of shear connectors can often be used to increase the traffic load capacity significantly. One type of shear connector that is suitable for post-installation, even though not commonly used, is the Coiled Spring Pin. These interference fit connectors can be installed from below the bridge deck during traffic, in order to minimize the impact on road users. This paper describes an experimental study on the fatigue strength of Coiled Spring Pins and a compilation of previously performed fatigue tests on this type of connector. The new test series, with nine specimens, are evaluated statistically and a fatigue strength design equation is proposed. The results show that there are large variations between different test series, while tests within the same series show good agreement. The reasons for this are discussed in the paper along with recommendations for future testing.

Place, publisher, year, edition, pages
Elsevier, 2019
Keywords
push-out test, fatigue, coiled spring pin, shear studs, strengthening, shear connector, post installation, composite, steel, concrete
National Category
Infrastructure Engineering
Research subject
Structural Engineering
Identifiers
urn:nbn:se:ltu:diva-70889 (URN)10.1016/j.jcsr.2018.10.017 (DOI)000457510200022 ()2-s2.0-85055559362 (Scopus ID)
Note

Validerad;2018;Nivå 2;2018-10-30 (johcin)

Available from: 2018-09-18 Created: 2018-09-18 Last updated: 2019-02-22Bibliographically approved

Open Access in DiVA

fulltext(28433 kB)552 downloads
File information
File name FULLTEXT01.pdfFile size 28433 kBChecksum SHA-512
6fe52bcbfe88eaa0f74bfb343f74c319d07e530d0ce047d450456d2f92b8f3f83e8027aa08b7cf4799ab7a7697981d99a3835ccad8697c1e70f80d188789785a
Type fulltextMimetype application/pdf

Authority records BETA

Hällmark, Robert

Search in DiVA

By author/editor
Hällmark, Robert
By organisation
Structural and Fire Engineering
Infrastructure Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 552 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 871 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf