Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Two-phase multi-model automatic brain tumour diagnosis system from magnetic resonance images using convolutional neural networks
Electronic and Communication Department, Al-Madina Higher Institute for Engineering and Technology, Giza, Egypt.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap. Faculty of Engineering, Al-Azhar University, Qena, P.O. Box 83513, Egypt.ORCID-id: 0000-0002-3800-0757
Faculty of Engineering, Minia University, Minia, Egypt.
Faculty of Engineering, Minia University, Minia, Egypt.
2018 (Engelska)Ingår i: EURASIP Journal on Image and Video Processing, ISSN 1687-5176, E-ISSN 1687-5281, Vol. 2018, artikel-id 97Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Brain tumour is a serious disease, and the number of people who are dying due to brain tumours is increasing. Manual tumour diagnosis from magnetic resonance images (MRIs) is a time consuming process and is insufficient for accurately detecting, localizing, and classifying the tumour type. This research proposes a novel two-phase multi-model automatic diagnosis system for brain tumour detection and localization. In the first phase, the system structure consists of preprocessing, feature extraction using a convolutional neural network (CNN), and feature classification using the error-correcting output codes support vector machine (ECOC-SVM) approach. The purpose of the first system phase is to detect brain tumour by classifying the MRIs into normal and abnormal images. The aim of the second system phase is to localize the tumour within the abnormal MRIs using a fully designed five-layer region-based convolutional neural network (R-CNN). The performance of the first phase was assessed using three CNN models, namely, AlexNet, Visual Geometry Group (VGG)-16, and VGG-19, and a maximum detection accuracy of 99.55% was achieved with AlexNet using 349 images extracted from the standard Reference Image Database to Evaluate Response (RIDER) Neuro MRI database. The brain tumour localization phase was evaluated using 804 3D MRIs from the Brain Tumor Segmentation (BraTS) 2013 database, and a DICE score of 0.87 was achieved. The empirical work proved the outstanding performance of the proposed deep learning-based system in tumour detection compared to other non-deep-learning approaches in the literature. The obtained results also demonstrate the superiority of the proposed system concerning both tumour detection and localization.

Ort, förlag, år, upplaga, sidor
Springer, 2018. Vol. 2018, artikel-id 97
Nyckelord [en]
Brain tumour diagnosis, MRI segmentation, Tumour detection and localization, Convolutional neural networks (CNNs)
Nationell ämneskategori
Systemvetenskap, informationssystem och informatik med samhällsvetenskaplig inriktning
Forskningsämne
Informationssystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-71054DOI: 10.1186/s13640-018-0332-4ISI: 000446234200001Scopus ID: 2-s2.0-85054149973OAI: oai:DiVA.org:ltu-71054DiVA, id: diva2:1252292
Anmärkning

Validerad;2018;Nivå 2;2018-10-01 (svasva)

Tillgänglig från: 2018-10-01 Skapad: 2018-10-01 Senast uppdaterad: 2018-10-22Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Awad, Ali Ismail

Sök vidare i DiVA

Av författaren/redaktören
Awad, Ali Ismail
Av organisationen
Datavetenskap
I samma tidskrift
EURASIP Journal on Image and Video Processing
Systemvetenskap, informationssystem och informatik med samhällsvetenskaplig inriktning

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 39 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf