Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Bringing predictability into a geometallurgical program: An iron ore case study
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.ORCID-id: 0000-0002-9227-2470
2019 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)Alternativ titel
Skapande av predikterbarhet i ett geometallurgiskt program : en fallstudie med järbnmalm (Svenska)
Abstract [en]

The risks of starting, operating and closing mining projects have become higher than ever. In order to stay ahead of the competition, mining companies have to manage various risks: technical, environmental, legal, regulatory, political, cyber, financial and social. Some of these can be mitigated with the help of geometallurgy. Geometallurgy aims to link geological variability with responses in the beneficiation process by a wide usage of automated mineralogy, proxy metallurgical tests, and process simulation. However, traditional geometallurgy has neglected the non-technical aspects of mining. This has caused wide-spread discussion among researchers on the benefits of geometallurgy and its place in industry.

In order to improve predictability in geometallurgy, such programs should cover planning, and the testing of hypotheses, and only then should there be an attempt to develop suitable technical tools. Such approach would ensure that those tools would be useful and are needed, not only from the technical point of view, but also from the users’ perspective. Therefore, this thesis introduces methodology on how to decrease uncertainty in the production planning and thus determine how much effort to put into decreasing uncertainty in geometallurgical programs.

The predictability improvement of a geometallurgical program starts at the planning stage. The classification system developed here, through the survey (interviews) and literature review, indicates different ways to link geological information with metallurgical responses, and suggests areas where technical development is called for. The proposed developments can be tested before the start of the geometallurgical program with synthetic data. For the iron ore reference study (Malmberget), it was shown that implementation of geometallurgy is beneficial in terms of net present value (NPV) and internal rate of return (IRR), and building geometallurgical spatial model for the process properties (recovery and total concentrate tonnages), and that it requires fewer samples for making a reliable process prediction than concentrate quality. The new process and proxy for mineralogical characterisation models were developed as part of the geometallurgical program for the iron ore case study (Leveäniemi): an estimator of ore quality (ܺ௅்௎), a model for iron recovery in WLIMS, a model for iron-oxides liberation prediction. Additionally, it was found that DT may be applied only for studying marginal ores. The evaluation of different spatial process modelling methods showed that tree methods can be successfully employed in predicting non-additive variables (recoveries).

Ort, förlag, år, upplaga, sidor
Luleå: Luleå University of Technology, 2019.
Serie
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Nyckelord [en]
Additivity, Apatite iron ore, AIO, Block model, Change of support, Classification, Data integration, DT, Feed quality, Geometallurgical program, Geometallurgy, Iron ore, Iron recovery, Leveäniemi, Liberation, Machine learning, Magnetic separation, Malmberget, Mineralogical approach, Mineralogy, Prediction, Proxies, Proxies approach, Sampling, Simulation, Synthetic ore body, Traditional approach, WLIMS
Nationell ämneskategori
Mineral- och gruvteknik Metallurgi och metalliska material
Forskningsämne
Mineralteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-71580ISBN: 978-91-7790-266-9 (tryckt)ISBN: 978-91-7790-267-6 (digital)OAI: oai:DiVA.org:ltu-71580DiVA, id: diva2:1263199
Disputation
2019-02-04, D770, Lulea, 10:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2018-11-14 Skapad: 2018-11-14 Senast uppdaterad: 2019-02-07Bibliografiskt granskad
Delarbeten
1. The geometallurgical framework: Malmberget and Mikheevskoye case studies
Öppna denna publikation i ny flik eller fönster >>The geometallurgical framework: Malmberget and Mikheevskoye case studies
2015 (Engelska)Ingår i: Mining Science, ISSN 2300-9586, Vol. 22, nr Special Issue 2, s. 57-66Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Geometallurgy is a growing area within a mineral processing industry. It brings together tasks of geologists and mineral processing engineers to do short and medium term production planning. However, it is also striving to deal with long term tasks such as changes in either production flow sheet or considering different scenarios. This paper demonstrates capabilities of geometallurgy through two case studies from perspective of Minerals and Metallurgical Engineering division Lulea University of Technology. A classification system of geometallurgical usages and approaches was developed in order to describe a working framework. A practical meaning of classification system was proved in two case studies: Mikheevskoye (Russia) and Malmberget (Sweden) projects. These case studies, where geometallurgy was applied in a rather systematic way, have shown the amount of work required for moving the project within the geometallurgical framework, which corresponds to shift of the projects location within the geometallurgical classification system.

Nationell ämneskategori
Metallurgi och metalliska material
Forskningsämne
Mineralteknik
Identifikatorer
urn:nbn:se:ltu:diva-31817 (URN)10.5277/ms150206 (DOI)000376381700007 ()61ccc4ff-d06f-480f-8831-8077d0c50aa2 (Lokalt ID)61ccc4ff-d06f-480f-8831-8077d0c50aa2 (Arkivnummer)61ccc4ff-d06f-480f-8831-8077d0c50aa2 (OAI)
Konferens
Conference of Doctoral students and Young Scientists : 20/05/2015 - 22/05/2015
Anmärkning

Godkänd; 2015; 20150629 (viklis); Konferensartikel i tidskrift

Tillgänglig från: 2016-09-30 Skapad: 2016-09-30 Senast uppdaterad: 2018-11-14Bibliografiskt granskad
2. Geometallurgical characterisation of Leveäniemi iron ore: Unlocking the patterns
Öppna denna publikation i ny flik eller fönster >>Geometallurgical characterisation of Leveäniemi iron ore: Unlocking the patterns
Visa övriga...
2019 (Engelska)Ingår i: Minerals Engineering, ISSN 0892-6875, E-ISSN 1872-9444, Vol. 131, s. 325-335Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

As part of a geometallurgical program for the Leveänimei iron ore mine, the Davis tube was used as proxy to classify ore types, predict iron recoveries in wet low-intensity magnetic separation (WLIMS), and to estimate liberation of mixed particles. The study was conducted by testing 13 iron ore samples with a Davis tube and a laboratory WLIMS. Ore feed was studied for modal mineralogy and liberation distribution with Automated Scanning Electron Microscopy. Data analyses to detect the patterns and data dependencies were done with multivariate statistics: principal component analysis, and projection to latent structures regression. Results show that a simple index (XLTU) based on mass pull (yield) in the Davis tube is capable of easy classification of magnetite ores. Using Davis tube mass pull and iron recovery, together with iron and Satmagan head grades may predict iron recovery in WLIMS. Also, the variability in Fe-oxides liberation pattern for magnetite semi-massive ores can be explained with the chemical composition of the Davis tube concentrate. It is concluded that the Davis tube test is better used only for marginal ores, since iron oxide minerals tend to be fully liberated in high-grade magnetite massive ores after grinding. The developed models may be used in populating a production block model.

Ort, förlag, år, upplaga, sidor
Elsevier, 2019
Nyckelord
Davis tube; Magnetic separation; Liberation; Apatite iron ore; Leveäniemi
Nationell ämneskategori
Metallurgi och metalliska material
Forskningsämne
Mineralteknik
Identifikatorer
urn:nbn:se:ltu:diva-71578 (URN)10.1016/j.mineng.2018.11.034 (DOI)000460495600036 ()2-s2.0-85057250019 (Scopus ID)
Anmärkning

Validerad;2018;Nivå 2;2018-12-05 (inah)

Tillgänglig från: 2018-11-14 Skapad: 2018-11-14 Senast uppdaterad: 2019-04-24Bibliografiskt granskad
3. Evaluation of sampling in geometallurgical programs through synthetic deposit model
Öppna denna publikation i ny flik eller fönster >>Evaluation of sampling in geometallurgical programs through synthetic deposit model
2016 (Engelska)Ingår i: (IMPC 2016), Canadian Institute of Mining, Metallurgy and Petroleum, 2016Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The main purpose of geometallurgy is to develop a model to predict the variability in the mineralprocessing performance within the ore body. Geometallurgical tests used for developing such a model need to be fast, practical and inexpensive and include as an input data relevant and measureable geological parameters like elemental grades, mineral grades and grain size. Important in each geometallurgical program is to define the number of samples needed to be sent for geometallurgical testing to enable reliable metallurgical forecast. This is, however, a complicated question that does not have a generic answer.

To study the question on sampling a simulation environment was built including a synthetic orebody and sampling & assaying module. A synthetic Kiruna type iron oxide - apatite deposit was established based on case studies of Malmberget ore. The synthetic ore body includes alike variability in rock types, modal mineralogy, chemical composition, density and mineral textures as its real life counterpart. The synthetic ore body was virtually sampled with different sampling densities for a Davis tube testing, a geometallurgical test characterising response in magnetic separation. Based on the test results a forecast for the processing of the whole ore body was created. The forecasted parameters included concentrate tonnages, iron recovery and concentrate quality in terms of iron, phosphorous and silica contents.

The study shows that the number of samples required for forecasting different geometallurgicalparameters varies. Reliable estimates on iron recovery and concentrate mass pull can be made with about 5-10 representative samples by geometallurgical ore type. However, when the concentrate quality in terms of impurities needs to be forecasted, the sample number is more than 20 times higher. This is due to variation in mineral liberation and shows the importance of developing techniques to collect qualitative information on mineral and ore textures in geometallurgy.

Ort, förlag, år, upplaga, sidor
Canadian Institute of Mining, Metallurgy and Petroleum, 2016
Nyckelord
Sampling, synthetic ore body, simulation, geometallurgical testing framework.
Nationell ämneskategori
Metallurgi och metalliska material
Forskningsämne
Mineralteknik
Identifikatorer
urn:nbn:se:ltu:diva-59640 (URN)2-s2.0-85048351936 (Scopus ID)978-1-926872-29-2 (ISBN)
Konferens
XXVIII International Mineral Processing Congress (IMPC 2016), Quebec City, Canada, 11–15 September 2016
Tillgänglig från: 2016-10-10 Skapad: 2016-10-10 Senast uppdaterad: 2018-11-14Bibliografiskt granskad
4. Development of a Synthetic Ore Deposit Model for Geometallurgy
Öppna denna publikation i ny flik eller fönster >>Development of a Synthetic Ore Deposit Model for Geometallurgy
2016 (Engelska)Ingår i: Geomet16: Third AusIMM International Geometallurgy Conference 2016 : Conference Proceedings, Parkville, Victoria: The Australian Institute of Mining and Metallurgy , 2016, s. 275-286Konferensbidrag, Publicerat paper (Refereegranskat)
Ort, förlag, år, upplaga, sidor
Parkville, Victoria: The Australian Institute of Mining and Metallurgy, 2016
Nationell ämneskategori
Metallurgi och metalliska material
Forskningsämne
Mineralteknik
Identifikatorer
urn:nbn:se:ltu:diva-32309 (URN)6c49c243-20d1-49dd-9cd3-bef089a91a23 (Lokalt ID)9781925100457 (ISBN)9781925100464 (ISBN)6c49c243-20d1-49dd-9cd3-bef089a91a23 (Arkivnummer)6c49c243-20d1-49dd-9cd3-bef089a91a23 (OAI)
Konferens
The Third AusIMM International Geometallurgy Conference : Geometallurgy - Beyond Conception 15/06/2016 - 16/06/2016
Anmärkning

Godkänd; 2016; 20160617 (viklis)

Tillgänglig från: 2016-09-30 Skapad: 2016-09-30 Senast uppdaterad: 2018-11-29Bibliografiskt granskad
5. Simulation of a Mining Value Chain with a Synthetic Ore Body Model: Iron Ore Example
Öppna denna publikation i ny flik eller fönster >>Simulation of a Mining Value Chain with a Synthetic Ore Body Model: Iron Ore Example
2018 (Engelska)Ingår i: Minerals, ISSN 2075-163X, E-ISSN 2075-163X, Vol. 8, nr 11, artikel-id 536Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Reconciliation of geological, mining and mineral processing information is a costly and time demanding procedure with high uncertainty due to incomplete information, especially during the early stages of a project, i.e., pre-feasibility, feasibility studies. Lack of information at those project stages can be overcome by applying synthetic data for investigating different scenarios. Generation of the synthetic data requires some minimum sparse knowledge already available from other parts of the mining value chain, i.e., geology, mining, mineral processing. This paper describes how to establish and construct a synthetic testing environment, or “synthetic ore body model” by integrating a synthetic deposit, mine production, constrained by a mine plan, and a simulated beneficiation process. The approach uses quantitative mineralogical data and liberation information for process simulation. The results of geological and process data integration are compared with the real case data of an apatite iron ore. The discussed approach allows for studying the implications in downstream processes caused by changes in upstream parts of the mining value chain. It also opens the possibility of optimising sampling campaigns by investigating different synthetic drilling scenarios including changes to the spacing between synthetic drill holes, composite length, drill hole orientation and assayed parameters.

Ort, förlag, år, upplaga, sidor
MDPI, 2018
Nyckelord
synthetic ore body, simulation, iron ore, prediction
Nationell ämneskategori
Mineral- och gruvteknik Metallurgi och metalliska material Matematisk analys
Forskningsämne
Mineralteknik; Matematik
Identifikatorer
urn:nbn:se:ltu:diva-71577 (URN)10.3390/min8110536 (DOI)000451530500063 ()2-s2.0-85057331919 (Scopus ID)
Anmärkning

Validerad;2018;Nivå 2;2018-12-07 (marisr)

Tillgänglig från: 2018-11-14 Skapad: 2018-11-14 Senast uppdaterad: 2019-02-27Bibliografiskt granskad
6. Evaluation and comparison of different machine-learning methods to integrate sparse process data into a spatial model in geometallurgy
Öppna denna publikation i ny flik eller fönster >>Evaluation and comparison of different machine-learning methods to integrate sparse process data into a spatial model in geometallurgy
2019 (Engelska)Ingår i: Minerals Engineering, ISSN 0892-6875, E-ISSN 1872-9444, Vol. 134, s. 156-165Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A spatial model for process properties allows for improvedproduction planning in mining by considering the process variability ofthe deposit. Hitherto, machine-learning modelling methods have beenunderutilised for spatial modelling in geometallurgy. The goal of thisproject is to find an efficient way to integrate process properties (ironrecovery and mass pull of the Davis tube, iron recovery and mass pull ofthe wet low intensity magnetic separation, liberation of iron oxides, andP_80) for an iron ore case study into a spatial model using machinelearningmethods. The modelling was done in two steps. First, the processproperties were deployed into a geological database by building nonspatialprocess models. Second, the process properties estimated in thegeological database were extracted together with only their coordinates(x, y, z) and iron grades and spatial process models were built.Modelling methods were evaluated and compared in terms of relativestandard deviation (RSD). The lower RSD for decision tree methodssuggests that those methods may be preferential when modelling non-linearprocess properties.

Ort, förlag, år, upplaga, sidor
Elsevier, 2019
Nyckelord
Data Integration, Spatial Model, WLIMS, Davis Tube, Iron Ore, Machine-learning, Geometallurgy.
Nationell ämneskategori
Mineral- och gruvteknik Metallurgi och metalliska material
Forskningsämne
Mineralteknik
Identifikatorer
urn:nbn:se:ltu:diva-71579 (URN)10.1016/j.mineng.2019.01.032 (DOI)000462107200015 ()2-s2.0-85060907032 (Scopus ID)
Anmärkning

Validerad;2019;Nivå 2;2019-02-11 (svasva)

Tillgänglig från: 2018-11-14 Skapad: 2018-11-14 Senast uppdaterad: 2019-04-11Bibliografiskt granskad

Open Access i DiVA

fulltext(13350 kB)133 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 13350 kBChecksumma SHA-512
e10ccc0c9b5f303b3586138f90c8799c970db59ab21db29f58591c7219ca5e03f0085f16ecc5a158975a05b90f50d3b11ca317f79d870480ef5a4a4273eb37ab
Typ fulltextMimetyp application/pdf

Personposter BETA

Lishchuk, Viktor

Sök vidare i DiVA

Av författaren/redaktören
Lishchuk, Viktor
Av organisationen
Mineralteknik och metallurgi
Mineral- och gruvteknikMetallurgi och metalliska material

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 133 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 553 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf