Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Estimation of coking indexes based on parental coal properties by variable importance measurement and boosted-support vector regression method
Department of Industrial Engineering, Birjand University of Technology, Birjand, Iran.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.ORCID-id: 0000-0002-2265-6321
2019 (Engelska)Ingår i: Measurement, ISSN 0263-2241, E-ISSN 1873-412X, Vol. 135, s. 306-311Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Coke as a fuel has a critical role for steel making industries. Since coke is a product of blended coals, it is essential to study relationships between parental coal components with quality of their coke products. Free swelling index (FSI) and maximum fluidity (MF) are standard coking indexes that widely used for blending coals and measuring quality of products. This study has been explored interdependencies between measured coal components by mutual information (MI) method and evaluated their importance in the prediction of coking indexes for a wide range of Illinois coal samples. MI results indicated that the set of moisture-organic sulfur and moisture-nitrogen-sulfate sulfur were the best variables for predictions of log(MF) and FSI, respectively. Adaptive Boosting method based on support vector regression (SVR), called Boosted-SVR, was used the selected variable sets for predictions of coking indexes. In testing stage of models, correlation of determination (R2) between actual and predicted values for the log(MF) and FSI were 0.89 and 0.90, respectively. These results indicated that Boosted-SVR model could quite satisfactory predict coking indexes. In general, outcomes of this investigation demonstrated an appropriate potential of coking quality prediction with limited numbers of input variables and suggested that a combination of MI with Boosted-SVR model as a new powerful tool which can be used for the computation of other complex fuel and processing problems based on measurement of conventional properties.

Ort, förlag, år, upplaga, sidor
Elsevier, 2019. Vol. 135, s. 306-311
Nyckelord [en]
Free swelling index, Maximum fluidity, Feature selection, Mutual information, Boosted-SVR
Nationell ämneskategori
Metallurgi och metalliska material
Forskningsämne
Mineralteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-72227DOI: 10.1016/j.measurement.2018.11.068ISI: 000468747300031Scopus ID: 2-s2.0-85057353034OAI: oai:DiVA.org:ltu-72227DiVA, id: diva2:1272679
Anmärkning

Validerad;2019;Nivå 2;2018-12-19 (svasva)

Tillgänglig från: 2018-12-19 Skapad: 2018-12-19 Senast uppdaterad: 2019-06-18Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Chelgani, Saeed Chehreh

Sök vidare i DiVA

Av författaren/redaktören
Chelgani, Saeed Chehreh
Av organisationen
Mineralteknik och metallurgi
I samma tidskrift
Measurement
Metallurgi och metalliska material

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 88 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf