Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A New Crossover Technique to Improve Genetic Algorithm and Its Application to TSP
International Islamic University, Chittagong, Bangladesh.
University of Chittagong, Bangladesh.
University of Chittagong, Bangladesh.ORCID-id: 0000-0002-7473-8185
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap.ORCID-id: 0000-0003-0244-3561
2019 (Engelska)Ingår i: Proceedings of 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), IEEE, 2019, artikel-id 18566123Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Optimization problem like Travelling Salesman Problem (TSP) can be solved by applying Genetic Algorithm (GA) to obtain perfect approximation in time. In addition, TSP is considered as a NP-hard problem as well as an optimal minimization problem. Selection, crossover and mutation are the three main operators of GA. The algorithm is usually employed to find the optimal minimum total distance to visit all the nodes in a TSP. Therefore, the research presents a new crossover operator for TSP, allowing the further minimization of the total distance. The proposed crossover operator consists of two crossover point selection and new offspring creation by performing cost comparison. The computational results as well as the comparison with available well-developed crossover operators are also presented. It has been found that the new crossover operator produces better results than that of other cross-over operators.

Ort, förlag, år, upplaga, sidor
IEEE, 2019. artikel-id 18566123
Nyckelord [en]
TSP, GA, crossover operator, offspring, chromosome, substring
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Distribuerade datorsystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-72626DOI: 10.1109/ECACE.2019.8679367Scopus ID: 2-s2.0-85064611070ISBN: 978-1-5386-9111-3 (digital)OAI: oai:DiVA.org:ltu-72626DiVA, id: diva2:1280530
Konferens
International Conference on Electrical, Computer and Communication Engineering (ECCE 2019), 07-09 February, 2019, Cox's Bazar, Bangladesh.
Projekt
A belief-rule-based DSS to assess flood risks by using wireless sensor networks
Forskningsfinansiär
Vetenskapsrådet, 2014-4251Tillgänglig från: 2019-01-19 Skapad: 2019-01-19 Senast uppdaterad: 2019-05-15Bibliografiskt granskad

Open Access i DiVA

fulltext(269 kB)134 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 269 kBChecksumma SHA-512
16e91b8487d50dbbbab249e292ad7b7cc780cec90e42d3aff250d3e4ae6c6253db0c3ffa1c6f74b3ff011227943917ae3b6845e9a35450347a3a2a5695e05805
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Andersson, Karl

Sök vidare i DiVA

Av författaren/redaktören
Hossain, Mohammad ShahadatAndersson, Karl
Av organisationen
Datavetenskap
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 134 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 423 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf