Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Improvement of measurement contribution for asset characterization in complex engineering systems by an iterative methodology
University of l'Aquila, L'Aquila, Italy.
University of l'Aquila, L'Aquila, Italy.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik.ORCID-id: 0000-0002-4107-0991
2018 (engelsk)Inngår i: International Journal of Service Science, Management, Engineering, and Technology, ISSN 1947-959X, Vol. 9, nr 2, s. 85-103, artikkel-id 4Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The evolution of systems based on the integration of Internet of Things (IoT) and Cloud computing technologies requires resolute and trustable management approaches, to let the industrial assets thrive and avoid losses in efficiency and, thus, profitability. In this article, a methodology based on the evaluation of the measurement uncertainty is proposed, which is able to suggest possible improvement paths and reliable decisions. The approach is based on the identification of subsequent tasks that should be fulfilled, also in a recursive way. Its application in the field, for the identification of the vibration and acoustic emission signatures of highly-performance machining tools, allows directing future actions to increase the potentiality of proper management of the information provided by measurements. In a complex scenario, characterized by many devices and instruments, the compliance with the procedures for measurement accuracy has proven to be a useful support.

sted, utgiver, år, opplag, sider
IGI Global, 2018. Vol. 9, nr 2, s. 85-103, artikkel-id 4
Emneord [en]
Centerless Grinding, Condition Monitoring, Internet of Things (IoT), Measurement Uncertainty
HSV kategori
Forskningsprogram
Drift och underhållsteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-72818DOI: 10.4018/IJSSMET.2018040104Scopus ID: 2-s2.0-85060732461OAI: oai:DiVA.org:ltu-72818DiVA, id: diva2:1286792
Tilgjengelig fra: 2019-02-07 Laget: 2019-02-07 Sist oppdatert: 2019-02-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Galar, Diego

Søk i DiVA

Av forfatter/redaktør
Galar, Diego
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 28 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf