Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A neural network framework for similarity-based prognostics
Warwick Manufacturing Group, University of Warwick, Coventry, United Kingdom.
Warwick Manufacturing Group, University of Warwick, Coventry, United Kingdom.
Pricewaterhouse Cooper, San Jose, CA, United States.
Stinger Ghaffarian Technologies, Inc., NASA Ames Research Center, Moffett Field, CA, United States.
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: MethodsX, ISSN 1258-780X, E-ISSN 2215-0161, Vol. 6, s. 383-390Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Prognostic performance is associated with accurately estimating remaining useful life. Difficulty in accurate prognostic applications can be tackled by processing raw sensor readings into more meaningful and comprehensive health condition indicators that will then provide performance information for remaining useful life estimations. To that end, typically, multiple tasks on data pre-processing and predictions have to be carried out such that tasks can be assessed using different methodological aspects. However, incompatible methods may result in poor performance and consequently lead to undesirable error rates.

The present research evaluates data training and prediction stages. A data-driven prognostic method based on a feed-forward neural network framework is first defined to calculate the performance of a complex system. Then, the health indicators are used in a similarity based remaining useful life estimation method. This framework presents a conceptual prognostic protocol that overcomes challenges presented by multi-regime condition monitoring data.

Ort, förlag, år, upplaga, sidor
Elsevier, 2019. Vol. 6, s. 383-390
Nyckelord [en]
Similarity based RUL calculation, Artificial neural networks, Data-driven prognostics
Nationell ämneskategori
Annan samhällsbyggnadsteknik
Forskningsämne
Drift och underhållsteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-73190DOI: 10.1016/j.mex.2019.02.015ISI: 000493729600043PubMedID: 30859074Scopus ID: 2-s2.0-85062036500OAI: oai:DiVA.org:ltu-73190DiVA, id: diva2:1296227
Anmärkning

Validerad;2019;Nivå 2;2019-03-14 (johcin)

Tillgänglig från: 2019-03-14 Skapad: 2019-03-14 Senast uppdaterad: 2019-11-22Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Personposter BETA

Goebel, Kai

Sök vidare i DiVA

Av författaren/redaktören
Goebel, Kai
Av organisationen
Drift, underhåll och akustik
I samma tidskrift
MethodsX
Annan samhällsbyggnadsteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 189 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf