Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Calibration event selection for green urban drainage modelling
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.ORCID-id: 0000-0002-6907-8127
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.ORCID-id: 0000-0003-0367-3449
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.ORCID-id: 0000-0001-9938-8217
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.ORCID-id: 0000-0003-1725-6478
2019 (Engelska)Ingår i: Hydrology and Earth System Sciences Discussions, ISSN 1812-2108, E-ISSN 1812-2116Artikel i tidskrift (Refereegranskat) Submitted
Abstract [en]

Calibration of urban drainage models is typically performed based on a limited number of observed rainfall-runoff events, which may be selected from a longer time-series of measurements in different ways. In this study, 14 single- and two-stage strategies for selecting these events were tested for calibration of a SWMM model of a predominantly green urban area. The event selection was considered in relation to other sources of uncertainty such as measurement uncertainties, objective functions, and catchment discretization. Even though all 14 strategies resulted in successful model calibration, the difference between the best and worst strategies reached 0.2 in Nash–Sutcliffe Efficiency (NSE) and the calibrated parameter values notably varied. Most, but not all, calibration strategies were robust to changes in objective function, perturbations in calibration data and the use of a low spatial resolution model in the calibration phase. The various calibration strategies satisfactorily predicted 7 to 13 out of 19 validation events. The two-stage strategies performed better than the single-stage strategies when measuring performance using the Root Mean Square Error, flow volume error or peak flow error (but not using NSE); when flow data in the calibration period had been perturbed by ±40 %; and when using a lower model resolution. The two calibration strategies that performed best in the validation period were two-stage strategies. The findings in this paper show that different strategies for selecting calibration events may lead in some cases to different results for the validation period, and that calibrating impermeable and green area parameters in two separate steps may improve model performance in the validation period, while also reducing the computational demand in the calibration phase.

Ort, förlag, år, upplaga, sidor
Copernicus Publications , 2019.
Nationell ämneskategori
Vattenteknik
Forskningsämne
VA-teknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-73294DOI: 10.5194/hess-2019-67OAI: oai:DiVA.org:ltu-73294DiVA, id: diva2:1298705
Projekt
Reliable modeling of green infrastructure in green urban catchments
Forskningsfinansiär
Forskningsrådet Formas, 2015-121Tillgänglig från: 2019-03-25 Skapad: 2019-03-25 Senast uppdaterad: 2019-04-16
Ingår i avhandling
1. Uncertainties in rainfall-runoff modelling of green urban drainage systems: Measurements, data selection and model structure
Öppna denna publikation i ny flik eller fönster >>Uncertainties in rainfall-runoff modelling of green urban drainage systems: Measurements, data selection and model structure
2019 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Osäkerheter i hydrologisk modellering av gröna dagvattensystem : Mätningar, urval av data och modellstruktur
Abstract [en]

Green urban drainage systems are used to avoid flooding and damages to people and property, while limiting the downstream flooding and water quality problems caused by pipe-based drainage systems. Computer models are used to analyse and predict the performance of such systems for design and operation purposes. Such models are simplifications of reality and based on uncertain measured data, so uncertainties will be involved in the modelling process and its outcomes, which can affect the design and operation of these systems. These uncertainties have been investigated extensively for traditional pipe-based urban drainage systems, but not yet for green alternatives. Therefore, the overall objective of this thesis is to contribute to improved applicability and reliability of computer models of green urban drainage systems. Specifically, the thesis aims to (1) improve understanding of the uncertainties arising from (a) model structure and (b) calibration data selection, (2) evaluate two alternative calibration methods for green urban drainage models, (3) discuss desirable structural features in urban drainage models, and (4) evaluate several sensors for hydrometeorological measurements in urban catchments.

The effects of model structure uncertainty were investigated using long-term simulations of synthetic catchments with varying soil types and depths for three different models. First, it was found that surface runoff could be a significant part of the annual water balance in all three models, depending on the soil type and depth considered. Second, differences were found in how sensitive the different models were to changes in soil type and depth. Third, the variation between different models was often large compared to the variation between different soil types. Fourth, the magnitude of inter-annual and inter-event variation varied between the models. Overall, the findings indicate that significant differences may occur in urban drainage modelling studies, depending on which model is used, and this may affect the design or operation of such systems.

The uncertainty from calibration data selection was investigated primarily by calibrating both a low- and high-resolution stormwater model using different sets of events. These event sets used different rainfall-runoff statistics to rank all observed events before selecting the top six for use in calibration. In addition, they varied by either calibrating all parameters simultaneously, or by calibrating parameters for impervious and pervious surfaces separately. This last approach sped up the calibration process. In the validation period the high-resolution models performed better than their low-resolution counterparts and the two-stage calibrations matched runoff volume and peak flows better than single-stage calibrations. Overall, the way in which the calibration events are selected was shown to have a major impact on the performance of the calibrated model.

Calibration data selection was also investigated by examining different ways of including soil water content (SWC) observations in the calibration process of a model of a swale. Some model parameters could be identified from SWC, but not from outflow observations. Including SWC in the model evaluation affected the precision of swale outflow predictions. Different ways of setting initial conditions in the model (observations or an equilibrium condition) affected both of these findings.

The precipitation sensors used in this thesis showed generally satisfactory performance in field calibration checks. Different types of precipitation sensors were associated with different requirements for maintenance and data acquisition. Sensors for sewer pipe flow rates showed good agreement with a reference instrument in the laboratory, as long as installation conditions were good. Higher pipe slopes and upstream obstacles lead to larger measurement errors, but this last effect was reduced by increasing water levels in the pipe. Sensor fouling was a source of errors and gaps in field measurements, showing that regular maintenance is required. The findings show that the evaluated flow sensors can perform satisfactorily, if measurement sites are carefully selected.

Ort, förlag, år, upplaga, sidor
Luleå: Luleå University of Technology, 2019
Serie
Licentiate thesis / Luleå University of Technology, ISSN 1402-1757
Nationell ämneskategori
Vattenteknik
Forskningsämne
VA-teknik
Identifikatorer
urn:nbn:se:ltu:diva-73367 (URN)978-91-7790-354-3 (ISBN)978-91-7790-355-0 (ISBN)
Presentation
2019-06-05, E632, Luleå University of Technology, Luleå, 10:00 (Engelska)
Opponent
Handledare
Projekt
Reliable modeling of green infrastructure in green urban catchmentsAssessment and modeling of green infrastructure for urban catchments
Tillgänglig från: 2019-04-04 Skapad: 2019-04-01 Senast uppdaterad: 2019-06-05Bibliografiskt granskad

Open Access i DiVA

fulltext(848 kB)22 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 848 kBChecksumma SHA-512
26ecb2959632c50a093a8cfb7b88e8969ed9c5213928a3f4463d57f9271b9aa8c98d972e721aca628f59d36b5c295ce50558e2563b772cc3bbf1fff6edb80b49
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltexthttps://www.hydrol-earth-syst-sci-discuss.net/hess-2019-67/

Personposter BETA

Broekhuizen, IcoLeonhardt, GüntherMarsalek, JiriViklander, Maria

Sök vidare i DiVA

Av författaren/redaktören
Broekhuizen, IcoLeonhardt, GüntherMarsalek, JiriViklander, Maria
Av organisationen
Arkitektur och vatten
I samma tidskrift
Hydrology and Earth System Sciences Discussions
Vattenteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 22 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 242 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf