Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Wind Turbine Aerodynamic Modeling in Icing Condition: Three-Dimensional RANS-CFD Versus Blade Element Momentum Method
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Strömningslära och experimentell mekanik.ORCID-id: 0000-0002-6025-2280
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Produkt- och produktionsutveckling.ORCID-id: 0000-0001-8216-9464
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Strömningslära och experimentell mekanik.ORCID-id: 0000-0001-7599-0895
2019 (Engelska)Ingår i: Journal of energy resources technology, ISSN 0195-0738, E-ISSN 1528-8994, Vol. 141, nr 7, artikel-id 071201Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Icing limits the performance of wind turbines in cold climates. The prediction of the aerodynamic performance losses and their distribution due to ice accretion is essential. Blade element momentum (BEM) is the basis of blade structural studies. The accuracy and limitations of this method in icing condition are assessed in the present study. To this purpose, a computational study on the aerodynamic performance of the full-scale NREL 5 MW rotor is performed. Three-dimensional (3D) steady Reynolds-averaged Navier–Stokes (RANS) simulations are performed for both clean and iced blade, as well as BEM calculations using two-dimensional (2D) computational fluid dynamics (CFD) sectional airfoil data. The total power calculated by the BEM method is in close agreement with the 3D CFD results for the clean blade. There is a 4% deviation, while it is underestimated by 28% for the iced one. The load distribution along the clean blade span differs between both methods. Load loss due to the ice, predicted by 3D CFD, is 32% in extracted power and the main loss occurs at the regions where the ice horn height exceeds 8% of the chord length.

Ort, förlag, år, upplaga, sidor
American Society for Mechanical Engineers (ASME) , 2019. Vol. 141, nr 7, artikel-id 071201
Nationell ämneskategori
Strömningsmekanik och akustik Annan maskinteknik
Forskningsämne
Strömningslära; Datorstödd maskinkonstruktion
Identifikatorer
URN: urn:nbn:se:ltu:diva-73824DOI: 10.1115/1.4042713ISI: 000470845800013Scopus ID: 2-s2.0-85063888524OAI: oai:DiVA.org:ltu-73824DiVA, id: diva2:1313319
Anmärkning

Validerad;2019;Nivå 2;2019-05-03 (johcin)

Tillgänglig från: 2019-05-03 Skapad: 2019-05-03 Senast uppdaterad: 2021-03-11Bibliografiskt granskad
Ingår i avhandling
1. Impact of Icing on Wind Turbines Aerodynamic
Öppna denna publikation i ny flik eller fönster >>Impact of Icing on Wind Turbines Aerodynamic
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Påverkan av isbildning på vindkraftverk aerodynamik
Abstract [en]

Wind energy covered 11.6% of Europe electricity demand in 2017. Region with cold climates represent a strong potential for wind energy companies because of their sparse population and proper wind conditions. The global wind energy installations in cold climate regions is forecasted to reach a capacity of 186 GW by the end of 2020. But wind turbines installed in cold climate regions are prone to the risks of ice accumulation which affects their aerodynamics behavior, as well as the safety, and structural loads.

The aerodynamic forces on wind turbine can be affected in two main ways: ice accretion changes the blade profile, and thus the flow path curvature, and the surface roughness. The importance of these two parameters depend on the ice type. The target ice type for this thesis is the smooth leading-edge glaze ice with horn shape. The aerodynamic consequences of the blade profile change because of the mentioned ice type are studied in detail. 

The findings of this thesis are classified in five main sections. The first section considers the methodology to model the performance of a wind turbine. The wake behind the turbine is also explored. Different aspects of the simulation methods with computational fluid dynamics using the Reynolds-averaged Navier-Stokes equations are investigated in both steady state and transient. In the second section, the time-dependent effects of icing are studied, exploring the moving vortices created by the irregularity of the ice and their frequencies and amplitudes. The main frequency modes of the flow dynamics were analyzed. In the third section, three-dimensional simulation of icing is implemented and the fluid flow arrangement through the rotor is investigated. Two well-recognized approaches are applied and compared, which are Blade Element Momentum (BEM) and CFD. An automated setup is programmed and launched to implement multiple CFD simulations to provide the aerodynamic data for structural analysis in the fourth section. The developed methodology is illustrated on a large-scale wind turbine. In section five, the effects of the uncertain level of ice-accretion is studied through an uncertainty quantification method. The aerodynamic losses are statistically discussed. Then, a scenario study is conducted according to the obtained polynomial chaos expansion, in which the probability distribution of wind power loss due to icing is inspected.

The achievements of this thesis can be used in to design of a wind turbine which is supposed to work in a cold climate, as well as assess the economics of a predesigned wind turbine working in a cold region.

Ort, förlag, år, upplaga, sidor
Luleå: Luleå tekniska universitet, 2018
Serie
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Nationell ämneskategori
Energiteknik Teknisk mekanik Strömningsmekanik och akustik
Forskningsämne
Strömningslära
Identifikatorer
urn:nbn:se:ltu:diva-71186 (URN)978-91-7790-228-7 (ISBN)978-91-7790-229-4 (ISBN)
Disputation
2018-12-06, E231, Luleå, Luleå, 13:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2018-10-15 Skapad: 2018-10-12 Senast uppdaterad: 2020-04-22Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Tabatabaei, NargesGantasala, SudhakarCervantes, Michel

Sök vidare i DiVA

Av författaren/redaktören
Tabatabaei, NargesGantasala, SudhakarCervantes, Michel
Av organisationen
Strömningslära och experimentell mekanikProdukt- och produktionsutveckling
I samma tidskrift
Journal of energy resources technology
Strömningsmekanik och akustikAnnan maskinteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 105 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf