Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Multivariate Product Adapted Grading of Scots Pine Sawn Timber for an Industrial Customer, Part 2: Robustness to Disturbances
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Träteknik.
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Träteknik.
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Träteknik.
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Träteknik.ORCID-id: 0000-0003-4530-0536
Vise andre og tillknytning
2019 (engelsk)Inngår i: Wood Material Science & Engineering, ISSN 1748-0272, E-ISSN 1748-0280, Vol. 14, nr 6, s. 420-427Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Holistic-subjective automatic grading (HSAG) of sawn timber by an industrial customer's product outcome is possible through the use of multivariate partial least squares discriminant analysis (PLS-DA), shown by part one of this two-part study. This second part of the study aimed at testing the robustness to disturbances of such an HSAG system when grading Scots Pine sawn timber partially covered in dust. The set of 308 clean planks from part one of this study, and a set of 310 dusty planks, that by being stored inside a sawmill accumulated a layer of dust, were used. Cameras scanned each plank in a sawmill's automatic sorting system that detected selected feature variables. The planks were then split and processed at a planing mill, and the product grade was correlated to the measured feature variables by partial least squares regression. Prediction models were tested using 5-fold cross-validation in four tests and compared to the reference result of part one of this study. The tests showed that the product adapted HSAG could grade dusty planks with similar or lower grading accuracy compared to grading clean planks. In tests grading dusty planks, the disturbing effect of the dust was difficult to capture through training.

sted, utgiver, år, opplag, sider
Taylor & Francis, 2019. Vol. 14, nr 6, s. 420-427
Emneord [en]
Sawn timber, visual grading, customer adoption, discriminant analysis
HSV kategori
Forskningsprogram
Träteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-73854DOI: 10.1080/17480272.2019.1612944ISI: 000469741800001Scopus ID: 2-s2.0-85065546163OAI: oai:DiVA.org:ltu-73854DiVA, id: diva2:1313821
Forskningsfinansiär
Vinnova, 2018-02749
Merknad

Validerad;2019;Nivå 2;2019-10-16 (johcin)

Tilgjengelig fra: 2019-05-06 Laget: 2019-05-06 Sist oppdatert: 2019-10-16bibliografisk kontrollert

Open Access i DiVA

fulltext(1274 kB)13 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1274 kBChecksum SHA-512
cf67eef871dc16171e77da6b05bcf259de36d713c4482eb104e29c2438d71bb0b8812879f7a71182aef4e2e21d8ed9a0fef0bc7d9f66e997e00be982b0ab91fd
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Olofsson, LinusBroman, OlofSkog, JohanFredriksson, MagnusSandberg, Dick

Søk i DiVA

Av forfatter/redaktør
Olofsson, LinusBroman, OlofSkog, JohanFredriksson, MagnusSandberg, Dick
Av organisasjonen
I samme tidsskrift
Wood Material Science & Engineering

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 13 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 20 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf