Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A self-healing elastomer based on an intrinsic non-covalent cross-linking mechanism
College of Science, Nanjing Forestry University, Nanjing, P. R. China .
Key Lab Beijing City Preparat & Proc Novel Polyme, State Key Lab Organ Inorgan Composites, Beijing University of Chemical Technology, Beijing, P. R. China.
College of Science, Nanjing Forestry University, Nanjing, P. R. China .
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Maskinelement.ORCID-id: 0000-0001-6085-7880
Vise andre og tillknytning
2019 (engelsk)Inngår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 7, nr 25, s. 15207-15214Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Synthesis and comprehensive examination of a polyurethane (urea) elastomer that self-heals based on intrinsic dynamic non-covalent bonds (van der Waals and hydrogen) are reported. The dynamic non-covalent bonds include hydrogen bonds and van der Waals forces. The difference in the previous approach in which hydrogen bond self-healing materials introduced dense quadruple hydrogen bonds at the ends or branched chains poly(propylene carbonate) (PPC) diol was used as the soft segment of the polyurethane (urea) material, and strong van der Waals forces were provided by the large number of carbonyl groups in its main chain; hydrogen bonds were formed by urethane bonds, urea bonds, and the carbonyl groups on PPC. The mechanical properties and healing efficiency of the self-healing polyurethane (urea) elastomer were studied. In situtemperature-dependent infrared and low-field nuclear magnetic resonance (LNMR) measurements were combined with molecular dynamics simulations to investigate the self-healing mechanisms. The results of the studies on the self-healing polyurethane demonstrate that the dynamic cross-linking between hydrogen bonds and van der Waals forces is the basic driving force for the self-healing ability of the material, and temperature is the key factor that affects hydrogen bonding and van der Waals forces. The effect of crystallization on the self-healing ability of the material was also studied. The molecular dynamics simulation results also demonstrate interplay between van der Waals forces and hydrogen bonds at different temperatures.

sted, utgiver, år, opplag, sider
Royal Society of Chemistry, 2019. Vol. 7, nr 25, s. 15207-15214
HSV kategori
Forskningsprogram
Maskinelement
Identifikatorer
URN: urn:nbn:se:ltu:diva-74367DOI: 10.1039/C9TA03775FISI: 000473054500023Scopus ID: 2-s2.0-85068172124OAI: oai:DiVA.org:ltu-74367DiVA, id: diva2:1322885
Merknad

Validerad;2019;Nivå 2;2019-07-12 (johcin)

Tilgjengelig fra: 2019-06-11 Laget: 2019-06-11 Sist oppdatert: 2019-07-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Shi, Yijun

Søk i DiVA

Av forfatter/redaktør
Shi, Yijun
Av organisasjonen
I samme tidsskrift
Journal of Materials Chemistry A

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 72 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf