Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Review on Brain Tumor Diagnosis from MRI Images: Practical Implications, Key Achievements, and Lessons Learned
Electronics and Communications Department, Al-Madina Higher Institute for Engineering and Technology, Giza, Egypt.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap. Faculty of Engineering, Al-Azhar University, Qena, Egypt.ORCID-id: 0000-0002-3800-0757
Electronics and Communications Department, Faculty of Engineering, Minia University, Minia, Egypt.
Electronics and Communications Department, Faculty of Engineering, Minia University, Minia, Egypt.
2019 (Engelska)Ingår i: Magnetic Resonance Imaging, ISSN 0730-725X, E-ISSN 1873-5894, Vol. 61, s. 300-318Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The successful early diagnosis of brain tumors plays a major role in improving the treatment outcomes and thus improving patient survival. Manually evaluating the numerous magnetic resonance imaging (MRI) images produced routinely in the clinic is a difficult process. Thus, there is a crucial need for computer-aided methods with better accuracy for early tumor diagnosis. Computer-aided brain tumor diagnosis from MRI images consists of tumor detection, segmentation, and classification processes. Over the past few years, many studies have focused on traditional or classical machine learning techniques for brain tumor diagnosis. Recently, interest has developed in using deep learning techniques for diagnosing brain tumors with better accuracy and robustness. This study presents a comprehensive review of traditional machine learning techniques and evolving deep learning techniques for brain tumor diagnosis. This review paper identifies the key achievements reflected in the performance measurement metrics of the applied algorithms in the three diagnosis processes. In addition, this study discusses the key findings and draws attention to the lessons learned as a roadmap for future research.

Ort, förlag, år, upplaga, sidor
Elsevier, 2019. Vol. 61, s. 300-318
Nyckelord [en]
Brain tumor diagnosis, Computer-aided methods, MRI images, Tumor detection, Tumor segmentation, Tumor classification, Traditional machine learning techniques, Deep learning techniques
Nationell ämneskategori
Systemvetenskap, informationssystem och informatik med samhällsvetenskaplig inriktning
Forskningsämne
Informationssystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-74505DOI: 10.1016/j.mri.2019.05.028ISI: 000479327400035PubMedID: 31173851Scopus ID: 2-s2.0-85067489010OAI: oai:DiVA.org:ltu-74505DiVA, id: diva2:1324427
Anmärkning

Validerad;2019;Nivå 2;2019-06-03 (svasva)

Tillgänglig från: 2019-06-13 Skapad: 2019-06-13 Senast uppdaterad: 2019-08-29Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Personposter BETA

Awad, Ali Ismail

Sök vidare i DiVA

Av författaren/redaktören
Awad, Ali Ismail
Av organisationen
Datavetenskap
I samma tidskrift
Magnetic Resonance Imaging
Systemvetenskap, informationssystem och informatik med samhällsvetenskaplig inriktning

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 70 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf