Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
AFM Study of pH-Dependent Adhesion of Single Protein to TiO2 Surface
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap. State Key Laboratory of Materials-Oriented and Chemical Engineering Nanjing Tech University.
Department of Materials and Environmental Chemistry Arrhenius Laboratory Stockholm University. Centre of Advanced Research in Bionanoconjugates and Biopolymers Petru Poni Institute of Macromolecular Chemistry Aleea Grigore Ghica-Voda, Iasi, Romania. State Key Laboratory of Materials-Oriented and Chemical Engineering Nanjing Tech University, China.
State Key Laboratory of Tribology Tsinghua University, Beijing, China.
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.ORCID-id: 0000-0002-0200-9960
Vise andre og tillknytning
2019 (engelsk)Inngår i: Advanced Materials Interfaces, ISSN 2196-7350, Vol. 6, nr 14, artikkel-id 1900411Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The effect of pH-induced electrostatic conditions on the molecular interaction force of a single lysozyme molecule with TiO2 is investigated using atomic force microscopy (AFM). The force between the charged or neutral lysozyme molecule and the TiO2 surface is measured at different pH from 3.6 to 10.8. It is found to be directly proportional to the contact area, given by an effective diameter of the lysozyme molecule, and is further qualitatively verified by the AFM-measured friction coefficients. The results of the Derjaguin–Landau–Verwey–Overbeek theory show that the pH can change the surface charge densities of both lysozyme and TiO2, but the molecular interaction force at different pH is only dependent on the pH-induced effective diameter of lysozyme. The molecular interaction forces, quantified at the nanoscale, can be directly used to design high-performance liquid chromatography measurements at macroscale by tuning the retention time of a protein under varied pH conditions. They can also be applied to develop a model for predicting and controlling the chromatographic separations of proteins.

sted, utgiver, år, opplag, sider
John Wiley & Sons, 2019. Vol. 6, nr 14, artikkel-id 1900411
Emneord [en]
AFM, DLVO theory, electrostatic conditions, HPLC, molecular interaction force
HSV kategori
Forskningsprogram
Energiteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-74601DOI: 10.1002/admi.201900411ISI: 000478624200016Scopus ID: 2-s2.0-85067084518OAI: oai:DiVA.org:ltu-74601DiVA, id: diva2:1325716
Merknad

Validerad;2019;Nivå 2;2019-08-21 (johcin)

Tilgjengelig fra: 2019-06-17 Laget: 2019-06-17 Sist oppdatert: 2019-08-21bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Dong, YihuiJi, Xiaoyan

Søk i DiVA

Av forfatter/redaktør
Dong, YihuiJi, Xiaoyan
Av organisasjonen
I samme tidsskrift
Advanced Materials Interfaces

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 35 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf