Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Simulation of Alternative Load Paths After a Wall Removal in a Platform-Framed Cross-Laminated Timber Building
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Träteknik.ORCID-id: 0000-0001-9196-0370
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Träteknik.ORCID-id: 0000-0002-0145-080x
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Träteknik.ORCID-id: 0000-0002-0336-6433
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Material- och solidmekanik. Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Träteknik.ORCID-id: 0000-0002-4686-4010
2019 (Engelska)Ingår i: CompWood 2019 Book of Abstracts / [ed] Tomas K. Bader, Josef Füssl, Anders Olsson, 2019Konferensbidrag, Muntlig presentation med publicerat abstract (Refereegranskat)
Abstract [en]

An increasing number of multi-storey timber buildings use cross-laminated timber (CLT) for their bearing structure. Platform-framed CLT buildings consist of vertical repetitions of floors resting upon one-storey tall walls, squeezing-in the floor panels between the walls. Tall buildings need to be structurally robust because many lives would be at stake in case of a disproportionate collapse. Robustness is the ability of a system to survive the loss of components. For collapse resistance, it poses the last line of defence, after an unforeseen exposure (e.g. accident, terrorism) has already occurred and after the exposed components could not resist failure. A robust building offers alternative load paths (ALPs) which come into action when a part of the bearing structure has been removed [1].

Many alternative load path analyses (ALPA) have been conducted for tall concrete and steel buildings using the finite element method (FEM), but for timber, ALPA are still scarce. ALPs depend on the behaviour of the connections after a loss [1]. Studies on timber so far have accounted for connections in a simplified manner by lumping their aggregate behaviour into single points. Our goal is to elicit the ALPs after a wall removal in a platform-framed CLT building, study their development and quantify their capacity, to determine whether they can prevent a collapse.

We investigated a corner bay of an 8-storey platform-framed CLT building (see Figure 1) and removed a wall at the bottom storey. We studied the ALPs of each storey by pushing down the walls above the gap in a non-linear quasi-static analysis in the FE software Abaqus. We accounted for contact and friction, considered plastic timber crushing, and accounted for brittle cracking in the panels. We modelled single fasteners with connector elements which simulated the elastic, plastic, damage and rupture behaviour. We recorded the force-displacement curves, i.e. pushdown curves, for each storey and used them to conduct a dynamic analysis of the entire bay in a simplified model, as suggested by [2].

The results show that the structure could engage the following ALPs after a wall removal: I) arching action in the outer floor panels, II) arching action of the walls, III) quasi-catenary action in the floor panels, and IV) hanging action from the roof panels. The ALPs were limited by various parameters, but they sufficed to resist a collapse of the bay. We observed that the inter-storey stiffness influenced the load-sharing among storeys, which affected the structural robustness. In the compressed connections, friction, and not the fasteners, transferred most of the horizontal loads. Future research should test the squeezed-in platform joint experimentally, to quantify its capacity for transverse shear loads. We also advise to assess the inter-storey stiffness to estimate the capacity for load-sharing among storeys.

Ort, förlag, år, upplaga, sidor
2019.
Nationell ämneskategori
Trävetenskap
Forskningsämne
Träteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-74893ISBN: 978-91-88898-64-7 (digital)OAI: oai:DiVA.org:ltu-74893DiVA, id: diva2:1328960
Konferens
CompWood 2019 - International Conference on Computational Methods in Wood Mechanics- from Material Properties to Timber Structures, June 17-19, 2019
Tillgänglig från: 2019-06-24 Skapad: 2019-06-24 Senast uppdaterad: 2019-09-06

Open Access i DiVA

fulltext(297 kB)3 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 297 kBChecksumma SHA-512
1bc0665832aae2b3ad3f80884c8db9d89a53d5429c86c4836edb8224db446e9c5641a274e9e65e70aad43723704da8a136c85bbdd5c3a4219c4d6dd4c08a14fe
Typ fulltextMimetyp application/pdf

Personposter BETA

Huber, Johannes Albert JosefEkevad, MatsGirhammar, Ulf ArneBerg, Sven

Sök vidare i DiVA

Av författaren/redaktören
Huber, Johannes Albert JosefEkevad, MatsGirhammar, Ulf ArneBerg, Sven
Av organisationen
TräteknikMaterial- och solidmekanik
Trävetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 3 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 16 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf