Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Estimation of heavy and light rare earth elements of coal by intelligent methods
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.ORCID-id: 0000-0002-2265-6321
Department of Industrial Engineering, Birjand University of Technology, Birjand, Iran.
Center for Applied Energy Research, University of Kentucky, Lexington, KY, USA.ORCID-id: 0000-0003-4694-2776
2019 (Engelska)Ingår i: Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, ISSN 1556-7036, E-ISSN 1556-7230Artikel i tidskrift (Refereegranskat) Epub ahead of print
Abstract [en]

Since last two decades, several investigations in various countries have been started to discover new rare earth element (REE) resources. It was reported that coal can be considered as a possible source of them. REE of coal occur in low concentrations, and their detection is a complicated process; therefore, their predictions based on conventional coal properties (proximate, ultimate and major elements (ME)) may have several advantages. However, few studies have been conducted in this area. This study examined relationships between coal properties and REE (HREE and LREE) for a wide range of coal samples (708 samples). Variable importance measure (VIM) by Mutual information (MI) as a new feature selection method was applied to consider the heterogeneous structure of coal and assess the individual relation between coal parameters and REE to select the compact subsets as input variables for modeling and improve the performance of prediction. VIM by MI showed that Si-Carbon, and Al-Hydrogen are the best subsets for the prediction of HREE and LREE concentrations, respectively. A boosted neural network (BNN) model as a new predictive tool was used for REE prediction. BNN can significantly reduce generalization of error. Results of BNN models showed that the HREE and LREE concentrations can satisfactory estimate (R 2 : 0.83 and 0.89, respectively). Results of this investigation were approved that MI-BNN can be used as a potential tool for prediction of other complex problems in energy and fuel areas.

Ort, förlag, år, upplaga, sidor
Taylor & Francis, 2019.
Nyckelord [en]
Coal, combustion products, HREE, LREE, mutual information, boosted neural network
Nationell ämneskategori
Mineral- och gruvteknik Metallurgi och metalliska material
Forskningsämne
Mineralteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-74986DOI: 10.1080/15567036.2019.1623943OAI: oai:DiVA.org:ltu-74986DiVA, id: diva2:1330493
Tillgänglig från: 2019-06-25 Skapad: 2019-06-25 Senast uppdaterad: 2019-07-05

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Chelgani, Saeed Chehreh

Sök vidare i DiVA

Av författaren/redaktören
Chelgani, Saeed ChehrehHower, James C.
Av organisationen
Mineralteknik och metallurgi
I samma tidskrift
Energy Sources, Part A: Recovery, Utilization, and Environmental Effects
Mineral- och gruvteknikMetallurgi och metalliska material

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 24 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf