Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Implementation of Univariate Paradigm for Streamflow Simulation Using Hybrid Data-Driven Model: Case Study in Tropical Region
School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor Bahru, Malaysia.ORCID-id: 0000-0003-3647-7137
Sustainable and Smart Township Research Centre (SUTRA), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.
Department of Water Resources, University of Baghdad, Baghdad, Iraq.
Department of Civil Engineering, Razi University, Kermanshah, Iran.
Vise andre og tillknytning
2019 (engelsk)Inngår i: IEEE Access, E-ISSN 2169-3536, Vol. 7, s. 74471-74481Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The performance of the bio-inspired adaptive neuro-fuzzy inference system (ANFIS) models are proposed for forecasting highly non-linear streamflow of Pahang River, located in a tropical climatic region of Peninsular Malaysia. Three different bio-inspired optimization algorithms namely particle swarm optimization (PSO), genetic algorithm (GA), and differential evolution (DE) were individually used to tune the membership function of ANFIS model in order to improve the capability of streamflow forecasting. Different combination of antecedent streamflow was used to develop the forecasting models. The performance of the models was evaluated using a number of metrics including mean absolute error (MAE), root mean square error (RMSE), coefficient of determination ( R2 ), and Willmott’s Index (WI) statistics. The results revealed that increasing number of inputs has a positive impact on the forecasting ability of both ANFIS and hybrid ANFIS models. The comparison of the performance of three optimization methods indicated PSO improved the capability of ANFIS model (RMSE = 7.96; MAE = 2.34; R2=0.998 and WI = 0.994) more compared to GA and DE in forecasting streamflow. The uncertainty band of ANFIS-PSO forecast was also found the lowest (±0.217), which indicates that ANFIS-PSO model can be used for reliable forecasting of highly stochastic river flow in tropical environment.

sted, utgiver, år, opplag, sider
USA: IEEE, 2019. Vol. 7, s. 74471-74481
Emneord [en]
Streamow forecasting, fuzzy logic, evolutionary algorithm, uncertainty analysis, tropical
HSV kategori
Forskningsprogram
Geoteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-75188DOI: 10.1109/ACCESS.2019.2920916ISI: 000472650400001OAI: oai:DiVA.org:ltu-75188DiVA, id: diva2:1333799
Merknad

Validerad;2019;Nivå 2;2019-07-05 (johcin)

Tilgjengelig fra: 2019-07-01 Laget: 2019-07-01 Sist oppdatert: 2019-08-15bibliografisk kontrollert

Open Access i DiVA

fulltext(10073 kB)32 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 10073 kBChecksum SHA-512
bfbdbaa54c9e299b97cffa1e624c75af9a782ba9acdc69f445b98ce098808c044106975085158eb25e165cd15ac71df5a4dbcbdccbab48230d1e10d68ec20b73
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Al-Ansari, Nadhir

Søk i DiVA

Av forfatter/redaktør
Yaseen, Zaher MundherAl-Ansari, Nadhir
Av organisasjonen
I samme tidsskrift
IEEE Access

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 32 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 40 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf